

# **2019 Operations and Monitoring Report**

Tahsis Landfill Tahsis, British Columbia

Comox Strathcona Waste Management





## **Executive Summary**

GHD Limited (GHD) was retained by Comox Strathcona Waste Management (CSWM), a function of the Comox Valley Regional District (CVRD), to complete the 2019 water quality monitoring and prepare this Annual Operations and Monitoring Report for the Tahsis Waste Management Centre (Site) located on North Maquinna Drive, approximately 2.0 kilometres (km) north of the Village of Tahsis (VoT), British Columbia (BC).

The objective of this annual report is to summarize the development and environmental monitoring results for the Site for the 2019 calendar year (Reporting Period). The annual report contains the information required to fulfill monitoring and reporting requirements in accordance with Section 25.3 of the 2012 Comox Strathcona Solid Waste Management Plan (SWMP) (AECOM, 2012) and Operational Permit (PR) PR-4278.

#### Site Operations and Development

The Site consists of approximately 7.5 hectares (ha) of Crown land subleased from Pacific Forest Products and is occupied and operated by the VoT as per agreement with the CVRD under license of occupation number 112889. The Site is currently authorized by PR-4278, issued in 1976, to accept municipal waste including refuse, ashes and digested sewage sludge. The Site has historically accepted municipal solid waste (MSW) and grit from septage screening in the VoT (EBA, 2013). The authorized works include the sanitary landfill (Landfill) whose waste footprint occupies an estimated 1.9 ha and related appurtenances.

The Landfill currently accepts municipal solid waste from the VoT, Conuma Fish Hatchery, the Moutcha Bay Resort, Esperanza and floating lodges (Tetra Tech, 2014). The Landfill is currently authorized to accept municipal waste for discharge in the Landfill until 2025 or until capacity is reached providing no environmental impacts occur.

The 2019 airspace consumption rate was determined based on the filling in the active area of the landfill, which was analyzed from the topographical surveys conducted in October 21, 2018 and October 30, 2019. Based on the calculated fill rate and CVRD wide average apparent waste density, an estimated 1,475 cubic meters (m<sup>3</sup>) of material was placed at the Landfill in 2019. As of December 31, 2019, approximately 4,912 m<sup>3</sup> of airspace remained at the Site based on the airspace capacity in the Fill Plan Update (GHD, 2018). Based on the 2019 airspace consumption rate of 4.0 m<sup>3</sup>/day, approximately 3.4 years of airspace remain at the Landfill. Using a three year annual airspace consumption average to estimate the remaining site life, it is estimated approximately 4.5 years of site life remains.

#### Water Quality Compliance Assessment

Two water quality sampling events were completed at the Site during 2019: May (spring) and November (fall). Analytical results for groundwater samples collected in 2019 were assessed relative to the BC Contaminated Sites Regulations (CSR) (BC Reg. 375/96 Schedule 3.2 Column 6 (Drinking Water) and Schedule 3.2 Column 3 (Aquatic Life) (ENV, 2017).

All parameters analyzed at all sampled groundwater monitoring wells were below applicable the Contaminated Sites Regulation (CSR) water quality standards in 2019.



Based on the groundwater assessment presented in Section 5.3, negligible Landfill influences are present in the local groundwater at the Site.

#### **Recommendations**

Based on the landfill development and results of the water quality monitoring program carried out as outlined in this report, GHD recommends the following:

- Continue landfilling as described in the Updated Fill Plan (GHD, 2018).
- Record the waste loads landfilled at the Site and approximate quantities of daily cover applied to the Landfill to assist in tracking the Site's airspace consumption rate.
- Continue with groundwater quality monitoring at the Site on a semi-annual basis.
- As limited impacts to groundwater quality are observed at the Site, surface water monitoring is not identified as being required at this time.



## **Table of Contents**

| 1. | Intro | duction                 |                                                                            | 1  |
|----|-------|-------------------------|----------------------------------------------------------------------------|----|
|    | 1.1   | Objective               | e and Scope                                                                | 1  |
|    | 1.2   | Regulato                | ory Setting                                                                | 2  |
|    | 1.3   | Annual F                | Report Organization                                                        | 2  |
| 2. | Site  | Backgrour               | nd                                                                         | 2  |
|    | 2.1   | Site Loca               | ation                                                                      | 2  |
|    | 2.2   | Landfill [              | Development                                                                | 3  |
|    | 2.3   | Geologic                | cal Setting                                                                | 3  |
|    | 2.4   | Hydroge                 | ological Setting                                                           | 3  |
| 3. | Site  | Operations              | s and Development                                                          | 4  |
|    | 3.1   | Site Ope                | erations                                                                   | 4  |
|    |       | 3.1.1<br>3.1.2          | Site Inspections<br>Leachate Collection                                    |    |
|    | 3.2   | Changes                 | s from Approved Reports, Plans, and Specifications                         | 5  |
|    | 3.3   | Site Dev                | elopment and Closure Works                                                 | 5  |
|    |       | 3.3.1<br>3.3.2          | Site Development<br>Closure Works                                          |    |
|    | 3.4   | Volume                  | Survey                                                                     | 5  |
|    |       | 3.4.1                   | Airspace Consumption and Remaining Capacity                                | 5  |
|    | 3.5   | Populati                | on Forecast and Waste Disposal Rates                                       | 6  |
|    |       | 3.5.1<br>3.5.2<br>3.5.3 | 2019 Waste Disposal<br>Population Forecast<br>Per Capita MSW Disposal Rate | 6  |
|    | 3.6   | Closure                 | and Post-Closure Fund                                                      | 7  |
|    | 3.7   | Operatio                | onal Plan for the Next 12 Months                                           | 8  |
|    | 3.8   | Public C                | omplaints                                                                  | 8  |
|    | 3.9   | Non-Cor                 | npliance Items                                                             | 8  |
| 4. | Envii | ronmental               | Monitoring Program                                                         | 8  |
|    | 4.1   | Groundv                 | vater Monitoring Program                                                   | 8  |
|    | 4.2   | Surface                 | Water Monitoring Program                                                   | 9  |
|    | 4.3   | Sampling                | g Methodology                                                              | 9  |
|    | 4.4   | Quality A               | Assurance/Quality Control                                                  | 9  |
| 5. | Envii | ronmental               | Monitoring Results and Interpretation                                      | 10 |
|    | 5.1   | Data Qu                 | ality Assessment and Validation                                            | 10 |
|    | 5.2   | Hydrauli                | c Monitoring Results                                                       | 10 |



|    | 5.3   | Groundwater Quality Monitoring Results |                                            |    |  |  |
|----|-------|----------------------------------------|--------------------------------------------|----|--|--|
|    |       |                                        | Leachate Indicators<br>Groundwater Results |    |  |  |
|    | 5.4   | Summary                                |                                            | 13 |  |  |
| 6. | Reco  | mmendatio                              | ons                                        | 14 |  |  |
| 7. | Refer | ences                                  |                                            | 16 |  |  |

## **Figure Index**

| Site Location                      |
|------------------------------------|
| Site Plan                          |
| Hydraulic Monitoring Results       |
| Groundwater Contours - Spring 2019 |
|                                    |

## **Table Index**

| Table 5.1 | Typical Leachate Parameter Concentrations | 12 |
|-----------|-------------------------------------------|----|
| Table 5.2 | Leachate Parameter Data Summary           | 12 |

## **Table Index (following text)**

| Table 3.1 | Waste Area Population and Projected Population           |
|-----------|----------------------------------------------------------|
| Table 4.1 | Monitoring Locations and Sampling Frequency              |
| Table 4.2 | Well Completion Details and Hydraulic Monitoring Results |
| Table 5.3 | Vertical Gradients                                       |
| Table 5.4 | Groundwater Analytical Results                           |
| Table 5.5 | Analytical Table Notes                                   |

## **Appendix Index**

| Appendix A | Tahsis Landfill Permit # PR-4278                                |
|------------|-----------------------------------------------------------------|
| Appendix B | Borehole Logs                                                   |
| Appendix C | 2018 and 2019 Topographic Surveys                               |
| Appendix D | 2019 Closure and Post-Closure Fund Estimates Memorandum Excerpt |
| Appendix E | Environmental Monitoring Specifications                         |
| Appendix F | Field Sample Keys and Laboratory Reports                        |
| Appendix G | Data Quality Assessment and Validation Memoranda                |
| Appendix H | Historical Groundwater/Surface Water Chemistry Trend Plots      |



## 1. Introduction

GHD Limited (GHD) was retained by Comox Strathcona Waste Management (CSWM) – a function of the Comox Valley Regional District (CVRD) – to carry out the 2019 water quality monitoring program and to prepare the 2019 Operations and Monitoring Report (Annual Report) for the Tahsis Waste Management Centre (Site). The Annual Report provides a summary of Site operations, landfill development, water quality monitoring activities, and assessment of the monitoring program results for 2019 calendar year (Reporting Period).

### **1.1 Objective and Scope**

The objective of this Annual Report is to summarize the development and environmental water quality monitoring program results for the Reporting Period. The Annual Report contains the following information in accordance with Section 25.3 of the Comox Strathcona Solid Waste Management Plan (SWMP) (AECOM, 2012), Section 10.6 of the Landfill Criteria for Municipal Solid Waste, Second Edition (Landfill Criteria) (BC MOE, 2016), and Section 15 of Permit PR-4278 (Permit) (MOE, 1988):

- Landfill gas quantities collected, flared and utilized (Section 2.2).
- A summary of the landfill operation equipment (Section 3.1).
- Results of regular inspections for cover integrity, health of vegetation, undesirable plant species, burrowing animals, erosion, settlement (Section 3.1.1).
- Leachate quantities collected, treated, discharged (Section 3.1.2).
- A review of the preceding year of operation plans for the next year and any new information or proposed changes relating to the facility (Sections 3.2, 3.3, 3.7).
- Changes from the approved reports, plans, and specifications (Section 3.2).
- Closure works completed (Section 3.3.2).
- A review of certified survey including volume changes (Section 3.4).
- The remaining Site life and capacity update (Section 3.4).
- Estimated tonnage and categories of waste landfilled and waste diverted from the landfill (Section 3.5).
- An updated estimate of the municipal solid waste (MSW) disposal per capita (Section 3.5.3).
- A waste area population table including projected population for the estimated facility life (Table 3.2).
- Certified updates to the landfill financial assurance report (Section 3.6).
- Operational plan for the next 12 months (Section 3.7).
- Any complaints received and actions taken as a result of the complaint (Section 3.8).
- Non-compliance items identified and an action plan to reach compliance (Section 3.9).



• Comparison of the environmental monitoring data to applicable regulatory standards, interpretation of the monitoring data, identification and interpretation of irregularities and trends, recommendations, and any proposed changes to the monitoring program (Section 5).

### **1.2 Regulatory Setting**

Landfilling at the Site is authorized under British Columbia (BC) Ministry of Environment (MOE) permit number PR-4278 (Permit) (MOE, 1988), initially issued on June 11, 1976, and last amended on March 8, 1988 (Appendix A). The Permit authorizes the disposal of up to 10,000 cubic metres (m<sup>3</sup>) of municipal waste annually. No monitoring or reporting requirements are specified under the Permit.

Analytical results for groundwater samples collected during the Reporting Period were compared to the BC Contaminated Sites Regulations (CSR) (BC Reg. 375/96 Schedule 3.2 Column 6 (Drinking Water) and Column 3 (Aquatic Life) (BC Ministry of Environment and Climate Change Strategy [ENV], 2017).

Based on GHD's experience on similar landfill projects throughout the province, GHD has concluded that the above CSR standards are appropriate for assessing groundwater quality at this Site.

CSR Schedule 3.2 also provides water quality standards for the protection of water used for irrigation and livestock watering, however, these standards are intended for lands within a 500 metres (m) radius of a water well or surface water intake used for irrigation or livestock watering. The Site does not fall within these conditions, therefore, irrigation and livestock standards have not been applied to the collected analytical data.

### **1.3 Annual Report Organization**

The Annual Report is organized into the following sections:

- Section 1 Introduction
- Section 2 Site Background
- Section 3 Site Operations and Development
- Section 4 Environmental Monitoring Program
- Section 5 Environmental Monitoring Results and Interpretation
- Section 6 Recommendations
- Section 7 References

## 2. Site Background

#### 2.1 Site Location

The Site is located approximately 2.0 kilometres (km) north of the Village of Tahsis (VoT), BC, on North Maquinna Drive. A Site location map is presented on Figure 2.1. A Site plan is presented on Figure 2.2. At this time, there is no legal lot area available so the property boundary is unknown.



The surrounding region is mountainous, second growth coniferous forest. The nearest surface water body is the Tahsis River, which flows from north to south approximately 200 m east of the Site and drains into the Tahsis Inlet located approximately 3.0 km to the south of the Site.

A closed wood waste landfill formerly operated by Pacific Forest Products is located immediately southeast of the landfill footprint. The Pacific Forest Products landfill historically provided disposal facilities for wood waste, metal and process wastes from the Doman Western Lumber Limited lumber mill. The closure date and landfill authorization permit number for the wood waste landfill were not available to GHD at the time of preparing this report.

### 2.2 Landfill Development

The Site is situated on Crown land subleased from Pacific Forest Products and is occupied and operated by the VoT as per agreement with the CVRD under license of occupation number 112889. The Site covers a total of approximately 7.5 hectares (ha) of which an estimated 1.9 ha is used for municipal landfilling. The landfill at the Site (Landfill) is authorized to accept municipal waste including refuse, ashes and digested sewage sludge and has historically accepted municipal solid waste (MSW) and grit from septage screening in the VoT (EBA, 2013).

There is currently no active leachate management system in place at the Site and, as the Landfill was developed without a liner, leachate removal is considered impractical. Consequently, no leachate collection system is planned (EBA, 2013).

There is currently no active landfill gas (LFG) recovery system at the Site. As of December 31, 2019, an estimated 61,309 tonnes of waste has been landfilled at the Site. As indicated in Section 3.5.1 of this report, it is estimated approximately 885 tonnes of waste was landfilled at the Site in 2019. As per the BC Landfill Gas Management Regulation, a LFG generation assessment report is not required at this time as the Site has landfilled less than 100,000 tonnes of waste during its lifetime and receives less than 10,000 tonnes of waste per year.

### 2.3 Geological Setting

Regional surficial geology in the vicinity of the Site is composed of fluvial sediments containing primarily sands and gravels (Guthrie and Penner, 1993).

Based on borehole logs, overburden geology at the Site is primarily composed of sands and gravels with occasional discontinuous silt layers. Site borehole logs are included in Appendix B.

Regional bedrock geology in the vicinity of the Site is composed of the Vancouver Group of mid to late Triassic age (Guthrie, 2003). The Vancouver Group is composed of undivided sedimentary rock and marine sedimentary rocks, with some siltstones and mudstones.

Bedrock was not encountered in any Site boreholes and, therefore, the thickness of local overburden and nature of the bedrock underlying the Site is unknown.

### 2.4 Hydrogeological Setting

Based on a review of the borehole logs, the Site overlies an unconfined aquifer primarily composed of sands and gravels with discontinuous silts. The Tahsis River, located approximately 200 m to the



east and 300 m south of the Site, receives groundwater from the sand and gravel aquifer underlying the Site. The Tahsis River drains into the Tahsis Inlet approximately 3 km south of the Site.

The water table is generally encountered at depths ranging approximately 1.5 to 13.5 m below ground surface (bgs) with seasonal water table fluctuations in the range of 1 m.

Based on historical groundwater elevation data, groundwater is inferred to flow predominantly to the southeast across the Site.

## 3. Site Operations and Development

### **3.1 Site Operations**

The Site currently receives waste from the VoT, Conuma Fish Hatchery, the Moutcha Bay Resort, Esperanza and floating lodges (Tetra Tech, 2014) and is open Wednesdays from 8:00 a.m. to 3:30 p.m. and Saturdays from 10:00 a.m. to 3:30 p.m., during which time it is attended by a site operator. Non-hazardous wastes, which may not be landfilled (e.g. metals, white goods, tires and clean wood), are stockpiled in marked areas to the north and east of the active landfill area and are periodically picked up and transported to an appropriate recycling facility off-Site. Staff use a 1991 CAT 518 compactor to conduct operations.

Site facilities consist of surface water management infrastructure, electric fencing, and the Landfill. Waste volumes and mass are not currently measured or recorded by Site staff.

#### **Entrance Facility**

The Site entrance is equipped with a lockable gate located south of the Landfill. There is also an electrified fence system around the Landfill, posted signs, and power. The Site is attended by a Site operator who directs waste drop off during operational hours. The Site does not have a weigh scale.

#### Sanitary Landfill

The landfill footprint occupies an estimated 1.9 ha of the Site based on the limit of waste provided in the Tahsis Landfill Surface Water Management Upgrade – Phase 1 Closure Report (EBA, 2014). Waste is deposited in a defined area by commercial vehicles operated by the VoT and by smaller pick-up trucks servicing the Conuma Hatchery, Moutcha Bay, and floating lodges (Tetra Tech, 2014). Daily cover is accomplished with movable metal plates as well as soil stockpiles located on Site. Intermediate cover consists of a combination of yard and wood waste grindings and gravel sourced from an on-Site gravel pit.

#### 3.1.1 Site Inspections

There were no issues regarding cover integrity, settlement, burrowing animals, or health of vegetation noted in 2019.

#### 3.1.2 Leachate Collection

The Landfill operates as a natural attenuation landfill. As such, leachate was not collected or treated in 2019.



### 3.2 Changes from Approved Reports, Plans, and Specifications

No changes from approved reports, plans, or specifications occurred in 2019 for the Site.

### 3.3 Site Development and Closure Works

#### 3.3.1 Site Development

Outside of normal Site operations and landfilling activities, the following Site activities were undertaken in 2019:

• Soil stockpiles were delivered to Site in 2019 from construction projects in the area. The soil stockpiles will be used as daily cover material.

#### 3.3.2 Closure Works

No closure works were completed in 2019.

### 3.4 Volume Survey

The most recent topographic surveys for the Site were conducted October 21, 2018 and October 30, 2019 by McElhanney Associates Land Surveying Ltd, based out of Campbell River, BC. Topographic surveys are typically conducted annually near the end of each calendar year in order to estimate the volume of airspace consumed between the two survey events. A copy of the 2018 and 2019 topographic surveys is provided in Appendix C.

The next volume survey is scheduled for fall 2020 to provide an update of the remaining airspace and fill rates.

#### 3.4.1 Airspace Consumption and Remaining Capacity

GHD developed airspace consumption and remaining capacity estimates for the Site from 2019 to 2025 based on a review of the two most recent topographical surveys conducted at the Site on October 21, 2018 and October 30, 2019 by McElhanney Associates Land Surveying Ltd. and the following assumptions:

- Approximately 1,512 m<sup>3</sup> of airspace was consumed between the October 2018 and October 2019 surveys.
- Total remaining landfill design volume as of December 31, 2019, was estimated to be 4,912 m<sup>3</sup>. This is an estimated airspace reduction of approximately 66% compared to the 2018 estimate (14,284 m<sup>3</sup>). However, unlike the 2019 estimate, the 2018 value did not account for the 0.75 m of final cover materials.
- Airspace consumption rate will remain constant at 2019 rate until closure (except for three-year average calculation).
- No filling to occur after 2025.

Based on the above noted assumptions, the 2019 annual airspace consumption rate for the Site was calculated at 1,475 m<sup>3</sup>, or 4.0 m<sup>3</sup> per day. The remaining airspace available at the Site as of December 31, 2019, is estimated at 4,912 m<sup>3</sup> representing 3.4 years' worth of airspace at the 2019



airspace consumption rate. Using the 2019 airspace consumption rate, landfill capacity will be reached at the Site in mid-2023, which is 2 years earlier than the planned closure.

The calculated remaining airspace volume estimate for 2019 accounted for the 0.75 m of final cover materials, which was not included in the 2018 remaining airspace volume.

The calculated airspace consumption rate for 2019 is approximately 53 percent higher than the 2018 calculated airspace consumption rate (974 m<sup>3</sup>). The 2019 consumption rate is likely greater due to additional construction waste received at the Site in 2019 and potentially inefficiencies in filling (i.e., use of more daily cover than is required, lower waste compaction).

Due to the variable fill rates at the Site over the last three years, GHD also calculated the three-year average airspace consumption rate. Using the 2017, 2018, and 2019 annual airspace consumption rate estimates, the average annual airspace consumption rate over the last three years is approximately 1,103 m<sup>3</sup> per year, or 3.03 m<sup>3</sup> per day. With the remaining airspace available at the Site as of December 31, 2019, of 4,912 m<sup>3</sup>, there is approximately 4.5 years' worth of airspace remaining at the three-year average consumption rate. Using this average rate, landfill capacity will be reached at the Site in mid 2024, which is half a year earlier than the planned closure.

Recording the waste loads landfilled at the Site and approximate quantities of daily cover material applied to the Landfill, may assist in determining the potential cause of the higher than expected airspace consumption rates at the Site.

### 3.5 **Population Forecast and Waste Disposal Rates**

#### 3.5.1 2019 Waste Disposal

GHD calculated the 2019 and three-year average Site waste disposal based on the following inputs:

- 2019 annual airspace consumption rate of 1,475 m<sup>3</sup> and three-year average annual airspace consumption rate of 1,103 m<sup>3</sup>.
- Apparent density of 0.6 tonnes of waste per m<sup>3</sup> based on CVRD wide average (AECOM, 2012).

Based on the above noted assumptions, GHD calculated the 2019 waste disposal at 885 tonnes and the three-year average waste disposal at 662 tonnes.

#### 3.5.2 Population Forecast

In past reports, GHD developed population forecasts for the VoT from the reporting year until the planned year of Landfill closure in 2025. Forecasts were based on population data from the 2016 federal census (Statistics Canada, 2018) and the change in population from the two most recent censuses (2011 and 2016). The British Columbia Ministry of Jobs, Economic Development and Competitiveness (MoJ) provides more recent population data, therefore, it will be used to estimate the population for VoT and will provide the basis for GHD's population forecasts in this report. GHD notes that there remains uncertainty in population estimates as VoT population varies significantly between seasons (Tetra Tech, 2014).

According to the latest BC Municipal Population Estimates, the VoT saw its population grow approximately 8.6 percent between 2018 and 2019 to a total of 303. Population forecast results up



until 2025 are presented in Table 3.1 and are based on a rolling three-year average of estimated yearly population change.

### 3.5.3 Per Capita MSW Disposal Rate

GHD calculated the 2019 and the 2016–2019 three-year average VoT per capita waste disposal rates based on the following inputs:

- 2019 airspace consumption rate of 1,475 m<sup>3</sup> and three-year average consumption rate of 1,103 m<sup>3</sup> per year.
- 2019 waste disposal of 885 tonnes and three-year average waste disposal of 662 tonnes, both calculated assuming an apparent waste density of 0.6 tonnes/m<sup>3</sup>.
- VoT population of 303.

Based on the above noted assumptions, GHD calculated the 2019 per capita disposal rate of 2,920 kilograms (kg) (2.92 tonnes) per capita per year and the three-year average disposal rate of 2,185 kg (2.18 tonnes) per capita per year.

The waste generation rate calculated in 2019 is almost six times greater and the three-year average rate over four times greater than the most recent available estimate for average per capita waste disposal rate in BC of 506 kg (0.506 tonnes) (BC Environmental Reporting, 2019).

Based on GHD's experience with sites of similar size and discussions with CVRD staff, it is likely that waste compaction at the Site is less efficient than the average CVRD rate of 0.6 tonnes per m<sup>3</sup> used in calculating the 2019 and three-year waste disposals of 885 and 662 tonnes, respectively. The estimated disposal rates likely overestimate the actual tonnage of waste disposed.

As population in the area is seasonally variable and available population data likely excludes some temporary population from local resorts and fishing lodges (e.g., Moutcha Bay Resort, Esperanza and floating lodges) it is likely that the available census population data underestimates the actual population contributing to filling at the Site.

Based on the above noted sources of error in the per capita waste generation rate estimate (overestimated waste generation rate and underestimated population), it appears VoT residents are likely generating more waste than the BC average of 0.506 tonnes/capita, but the calculated MSW disposal rate for 2019 of 2.92 tonnes/capita and three-year average rate of 2.18 tonnes/capita are higher than the actual disposal rate at the Site. This observation cannot be confirmed as the Site does not have a weigh scale to provide tonnage data.

### 3.6 Closure and Post-Closure Fund

Closure and post-closure (CPC) fund estimates for the Site are prepared under a separate cover. 2019 forecast CPC costs were submitted to the CVRD in a memorandum, which included forecast estimates for the Comox Valley Waste Management Centre, the Campbell River Waste Management Centre, the Tahsis Landfill, the Zeballos Landfill and the Gold River Landfill and details of the forecast calculation method. A copy of the memorandum with the sections relevant to the Site is included in Appendix D.



### **3.7 Operational Plan for the Next 12 Months**

The operational plan for the next 12 months (2020 calendar year) is to continue landfilling as prescribed in the Fill Plan Update (GHD, 2018).

### **3.8 Public Complaints**

No complaints were received from the public for the Site in 2019.

### 3.9 Non-Compliance Items

No non-compliance items occurred in at the Site in 2019.

## 4. Environmental Monitoring Program

The water quality monitoring program for the Site was developed with consideration of the Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills (BC MOE, 1996) based on previous water quality monitoring reports with the goal of determining what impacts (if any) the Landfill has on the receiving groundwater.

Two water quality monitoring events (May and November) were conducted during the 2019 Reporting Period. Water quality monitoring was conducted by GHD personnel with analytical services provided by ALS Environmental, in Burnaby, BC.

Water quality monitoring locations are presented on Figure 2.2. Monitoring specifications including analytical parameters and the monitoring frequency for 2019 are included in Appendix E.

### 4.1 Groundwater Monitoring Program

The objective of the groundwater monitoring program is to detect the extent and magnitude of groundwater alteration (if any) associated with landfilling activities, predict potential migration of leachate derived contaminants in groundwater, and identify the need to mitigate potential environmental risk.

Groundwater monitoring wells (monitoring wells) are generally located along the perimeter of the landfill footprint and further downgradient from the Landfill for the purpose of monitoring groundwater quality at the property boundary as shown in Figure 2.2. A list of the wells and frequency of sampling are presented in Table 4.1. Well completion details, including the depths of screened intervals for each groundwater monitoring well are included in Table 4.2. The 2019 groundwater monitoring program included hydraulic monitoring at the following monitoring wells:

- One nested overburden background monitoring well (PFP#4A/B).
- Two downgradient overburden monitoring wells adjacent to the limit of waste (MW-1, MW-2).
- Three nested downgradient overburden monitoring wells on the adjacent Pacific Forest Products property (PFP#1A/B/C/D, PFP#2A/B/C, and PFP#3A/B/C).

In addition to hydraulic monitoring, groundwater samples were collected for chemical analysis at MW-1, MW-2, PFP#1A, PFP#2A, PFP#3A and PFP#4A. As recommended in the 2018 Operations



and Monitoring Report (GHD, 2019) the monitoring program was adjusted for 2019 to collect groundwater samples from the "A" wells of the "PFP" wells instead of the "B" wells as the "A" wells are screened at a similar elevation as MW-1 and MW-2.

Groundwater samples were collected semi-annually as outlined in Table 4.1. Groundwater samples collected were analyzed for various general chemistry parameters, nutrients, and dissolved metals. A more detailed description of analyzed parameters can be found in the Monitoring Specifications in Appendix E.

### 4.2 Surface Water Monitoring Program

At this time, no surface water monitoring program is undertaken at the Site.

### 4.3 Sampling Methodology

The following section provides a general description of the field sampling methods used at the Site's groundwater monitoring program.

For groundwater sample collection, the following sampling methodology was generally used:

- Daily equipment inspection and calibration.
- Well identification and inspection.
- Water level monitoring followed by well volume calculation.
- Well purging and stabilization monitoring. Purging was completed using a dedicated bailer or dedicated Waterra<sup>™</sup> tubing fitted with a foot valve. A minimum of three well volumes were purged at wells with good recovery. Well water quality stabilization was monitored via the collection of field parameter measurements after the purging of each well volume including pH, specific conductance, temperature, turbidity, and oxidation-reduction potential.
- Sample collection using dedicated Waterra<sup>™</sup> tubing.
- Equipment decontamination.

All samples were collected in the appropriate laboratory-supplied sample containers, preserved as required, packaged in an ice-chilled cooler, and delivered to the laboratory under chain-of-custody protocol. Groundwater samples designated for dissolved metals analysis were field filtered.

### 4.4 Quality Assurance/Quality Control

In order to ensure adequate quality control for water quality samples, the following quality assurance/quality control (QA/QC) practices were employed during the reporting period:

- Activities performed by qualified and trained personnel.
- Field QA/QC included field duplicate and field blank analysis.
- Data validation was completed by a qualified GHD chemist to assess laboratory and field QA/QC, and to determine if the data exhibited acceptable levels of accuracy and precision.



## 5. Environmental Monitoring Results and Interpretation

This section presents the hydraulic monitoring results, water quality monitoring results, and provides a review of QA/QC to ensure available field and analytical data are suitable for their intended use. Appendix F presents field data, field parameters, field sample keys (FSKs), and laboratory reports collected in 2019.

### 5.1 Data Quality Assessment and Validation

Analytical data generated during the Reporting Period was reviewed by a qualified GHD chemist to assess laboratory and field QA/QC. Data quality assessment and validation results are presented in Appendix G.

Laboratory QA/QC was evaluated by assessing the final results and supporting quality QA/QC data. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, duplicate data, recovery data from surrogate spikes, laboratory control samples (LCS), matrix spikes (MS), and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced and applicable guidance from the documents entitled:

- i. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008.
- ii. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review", USEPA 540-R-10-011, January 2010.
- "British Columbia Environmental Laboratory Manual", 2015 Edition, Environmental Monitoring, Reporting & Economics Knowledge Management Branch, Ministry of Environment, Province of British Columbia.

Field QA/QC was monitored by analyzing field duplicate samples. The maximum criterion used to assess overall precision for field duplicates is a relative percent difference (RPD) of 20 percent.

Qualifications were made to the analytical data presented in the following sections based on the quality assessment and validation results. Details of the qualifications are presented in Table 5.4 with explanatory notes contained on Table 5.5. Overall, the data were found to exhibit acceptable levels of accuracy and precision and are suitable for their intended use with noted qualifiers presented in Appendix G.

### 5.2 Hydraulic Monitoring Results

Groundwater elevations were measured semi-annually during the May and November 2019 monitoring events. Based on observed static water levels and calculated groundwater contours, groundwater at the Site flows to the southeast through a sand and gravel aquifer and through the adjacent Pacific Forest Products closed landfill before reaching the downgradient overburden monitoring wells (presented on Figure 5.2). As the Pacific Forest Products landfill historically



accepted wood waste, metal, and process wastes, this could influence groundwater geochemistry in the area and is considered when interpreting results.

Table 4.2 presents hydraulic monitoring results collected during the monitoring events. A hydrograph presenting historical hydraulic monitoring results is presented in Figure 5.1. Due to a field sampling error, groundwater elevations were only measured at the "A" series of the "PFP" wells, MW-1, and MW-2.

From Figure 5.1, groundwater elevations at the Site in 2019 appear to be consistent with historical results and appear to fluctuate seasonally. Groundwater elevations at MW-1 were notably higher than groundwater elevations at the other monitoring wells on Site during the fall 2019 monitoring event. Further monitoring is required to determine if this is indicative of a change in groundwater elevations at this location or anomalous.

Calculated vertical gradients are presented in Table 5.3 for selected nested wells. Well pairs were chosen based on historical data to allow consistent comparison of data. Vertical gradients near the landfill were estimated using data collected from nested wells PFP#1, PFP#2, PFP#3 and PFP#4. Examination of the vertical gradients indicated the following:

- Calculated vertical gradients ranged from -0.020 m/m to 0.052 m/m.
- Generally slightly positive (downward) gradients were observed in the upper portions of the monitored aquifer becoming increasingly negative (upward) with depth.
- Vertical gradients were generally of small magnitude and showed variation in direction between well nests indicating there is no dominant trend in vertical gradients across the Site.
- No clear seasonal trend in vertical gradients was observed during 2019.
- Vertical gradients within the unconfined aquifer are relatively weak.

### 5.3 Groundwater Quality Monitoring Results

Groundwater samples were collected from groundwater monitoring wells during the spring and fall monitoring events. Groundwater analytical results are summarized in Table 5.4. Detailed laboratory reports are included in Appendix F. Historical groundwater data trend plots for select parameters are included in Appendix H.

#### 5.3.1 Leachate Indicators

The following section presents an examination of selected leachate indicator parameters in groundwater. Parameters were selected to identify indications of leachate impact (if any) in Site groundwater. Due to the lack of site-specific leachate chemistry data, typical leachate indicator parameters and their respective ranges were identified based on literature values (Mulamoottil, et al., 1999) which have been used to represent groundwater impacted by MSW leachate. Based on the age of the landfill, GHD compared the concentrations of typical leachate parameters to typical values for older landfill leachate (10 to 15 years post closure).

Typical leachate indicators for older leachate are TDS, chloride, sodium, potassium, sulphate, calcium, iron, and manganese. Typical concentration ranges for the aforementioned parameters are presented in the table below.



| Parameter                        | Old Leachate |  |  |  |
|----------------------------------|--------------|--|--|--|
| TDS (mg/L)                       | 2,000        |  |  |  |
| Chloride (mg/L)                  | 500          |  |  |  |
| Sulphate (mg/L)                  | 50           |  |  |  |
| Calcium (mg/L)                   | 300          |  |  |  |
| Sodium + Potassium (mg/L)        | 100          |  |  |  |
| Iron (mg/L)                      | 100 - 500    |  |  |  |
| Manganese (mg/L)                 | 0.03 - 79    |  |  |  |
| Source: Mulamoottil, et al, 1999 |              |  |  |  |

#### **Table 5.1 Typical Leachate Parameter Concentrations**

GHD considers the values of older landfill leachate to represent a realistic estimate of potential parameter concentrations in leachate at the Site. However, leachate characteristics vary widely between landfills as well as over each individual landfills' lifetime, therefore, the example values are for comparison purposes only and cannot be used to definitively determine whether leachate impacts are present or not.

### 5.3.2 Groundwater Results

Groundwater analytical results were assessed against BC CSR water quality standards as discussed in Section 1.2. Concentrations for all parameters tested at all wells were below applicable standards in 2019.

Based on historical and current hydrogeological data, background water quality was inferred based on analytical data from one upgradient well (PFP#4A) screened in the gravel aquifer. Downgradient groundwater quality was assessed from wells MW-1, MW-2, PFP#1A, PFP#2A, and PFP#3A in order to maintain consistency with historical environmental monitoring programs and historical analytical data. The following table presents a summary of analytical data for typical leachate parameters from the 2019 monitoring events including background, Landfill and downgradient wells along with the most stringent applicable CSR standard:

|                             |                    |                         | Upgradient Well      | Landfill Well    | Landfill Well    | Downgradient<br>(PFP#1A, |
|-----------------------------|--------------------|-------------------------|----------------------|------------------|------------------|--------------------------|
| Parameter <sup>(1)(3)</sup> | CSR <sup>(5)</sup> | Leachate <sup>(4)</sup> | (PFP#4A)             | (MW-1)           | (MW-2)           | PFP#2A,<br>PFP#3A)       |
| Calcium                     | -                  | 300                     | 27.8 – 36            | 43.7 – 55.0      | 31.7 – 42.5      | 19.9 – 126               |
| Chloride                    | 250 <sup>(6)</sup> | 500                     | 1.12 – 1.72          | 1.27 – 2.04      | 1.87 – 2.38      | 1.36 – 2.03              |
| Iron                        | 6.5(6)             | 100 – 500               | ND                   | ND               | ND               | ND - 0.056               |
| Manganese                   | 1.5 <sup>(6)</sup> | 0.03 – 79               | 0.00032 –<br>0.00089 | ND               | ND               | 0.00013 –<br>0.00752     |
| Potassium                   | -                  | 100 <sup>(7)</sup>      | ND                   | 0.126 –<br>0.317 | 0.099 –<br>0.151 | 0.118 – 4.76             |
| Sodium                      | 200 <sup>(6)</sup> | 100 <sup>(7)</sup>      | 0.838 - 1.04         | 1.15 – 1.35      | 0.985 – 1.63     | 0.820 – 10               |
| Sulphate                    | 500 <sup>(6)</sup> | 50                      | 1.68 – 1.69          | 1.93 – 3.80      | 2.51 – 3.20      | 1.46 – 3.57              |
| TDS                         | -                  | 2000                    | 99 – 155             | 178 – 199        | 114 – 172        | 120 - 440                |

#### Table 5.2 Leachate Parameter Data Summary



|                            |                    |                         | Upgradient Well | Landfill Well | Landfill Well | Downgradient<br>(PFP#1A. |
|----------------------------|--------------------|-------------------------|-----------------|---------------|---------------|--------------------------|
| Parameter <sup>(1)(3</sup> | CSR <sup>(5)</sup> | Leachate <sup>(4)</sup> | (PFP#4A)        | (MW-1)        | (MW-2)        | PFP#2A,<br>PFP#3A)       |

Notes:

(1) Parameter concentrations in Site groundwater wells represent observed range values detected during 2018.

(2) ND Non-detect: parameter concentrations below laboratory reportable limit.

(3) Units in mg/L.

- (4) Concentrations represent estimated mean or range values for wastes of approximately 10 year old waste for all parameters except manganese which is based on 15 year old waste (Mulamoottil, et al, 1999).
- (5) Concentrations represent the most stringent applicable standard with the exception of sulphate. CSR Schedule 3.2 Column 3 (FAW) criteria for sulphide is dependent on hardness and was not included in the table.
- (6) CSR, Schedule 3.2, Column 6 (Drinking Water Standard).

(7) Example concentration represents the combined concentration of potassium and sodium.

Leachate indicator parameter concentrations in Site groundwater samples collected in 2019 are well below typical leachate ranges and applicable CSR standards. Examination of 2019 analytical results and historical trends of groundwater parameters indicate that:

- Leachate indicator parameter concentrations are within historical ranges for all parameters analyzed in Site groundwater quality at MW-1 and MW-2.
- Leachate indicator parameter concentrations in groundwater of the "A" series of the PFP wells is generally similar to the "B" series of the PFP wells.
- Concentrations of most leachate indicator parameters in groundwater collected from the landfill and downgradient monitoring wells were marginally above or similar to background groundwater quality indicating no significant leachate derived impacts to groundwater at the sampled monitoring locations.
- Groundwater quality at PFP#1A demonstrated elevated concentrations of alkalinity, hardness
  and conductivity during the spring 2019 monitoring event compared to the historical range for
  PFP#1B and to concentrations in samples collected from PFP#1A during the fall 2019
  monitoring event. The spring 2019 monitoring event was the first time PFP#1A has been
  sampled in recent years by GHD, and the well was not re-developed before sampling, which
  may account for these elevated concentrations. Elevated turbidity and total dissolved solids
  samples collected from PFP#1A support this assertion.

Based on the results of the 2019 groundwater monitoring program, no notable groundwater quality impacts are resulting from landfilling at the Site.

#### 5.4 Summary

- No major landfill developments occurred at the Site in 2019, with the exception of receiving soil from nearby construction activities. The soil will be used as daily cover material.
- Based on survey results collected on October 21, 2018 and October 31, 2019 by McElhanney Associates Land Surveying Ltd., approximately 1,512 m<sup>3</sup> of airspace was consumed at the Site between the two surveys.
- An estimated 4,912 m<sup>3</sup> of airspace remained at the Landfill as of December 31, 2019. Based on the 2019 airspace consumption rate approximately 3.4 years' worth of Site life remains.



- An estimated 885 tonnes of waste was deposited at the Landfill during 2019 resulting in a calculated waste area waste disposal rate of 4,400 kg per capita per year. The estimated tonnage and waste disposal per capita rates for 2019 are both likely inaccurate potentially due to the Site receiving a large volume of construction waste in 2019, inefficient waste compaction, and seasonal population fluctuation in the Site's wasteshed.
- The monitoring activities for 2019 included semi-annual groundwater sampling, semi-annual hydraulic monitoring, analysis of groundwater water samples, and interpretation of data. The following summarizes the results of environmental monitoring at the Site for 2019:
  - Groundwater at the Site generally flows southeast.
  - All parameters analyzed in all groundwater locations sampled were less than the applicable CSR standards.
  - Negligible leachate impacts were identified in the groundwater at any of the monitoring locations.
- Based on an examination of current and historical data and trends, it appears that the Landfill
  has no significant impact on the surrounding receiving groundwater. Sufficient natural
  attenuation mechanisms are mitigating adverse potential impacts from the Landfill to the
  surrounding groundwater.

## 6. **Recommendations**

Based on the landfill development and results of the water quality monitoring program carried out as outlined in this report, GHD recommends the following:

- Continue landfilling as prescribed in the Fill Plan Update (GHD, 2018).
- Record the waste loads landfilled at the Site and approximate quantities of daily cover applied to the Landfill to assist in tracking the Site's airspace consumption rate. (e.g., X truckloads of waste, Y truckloads of cover material on DDMMYYYY).
- Continue with groundwater quality monitoring at the Site on a semi-annual basis.
- As limited impacts to groundwater quality are observed at the Site, surface water monitoring is not identified as being required at this time.



All of Which is Respectfully Submitted,

GHD

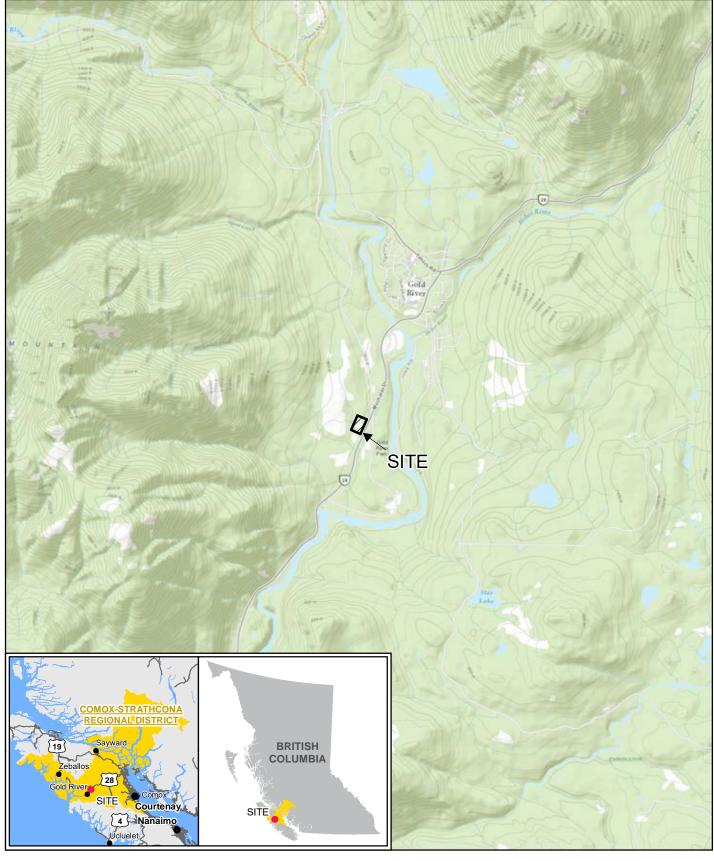
ano

Chris Thorne, B.Sc.

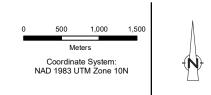
Michuh Dyh

Michaela Dyck, G.I.T.

11


Gregory D. Ferraro, P.Eng.




## 7. References

AECOM, December 2012. 2012 Comox Strathcona Solid Waste Management Plan.

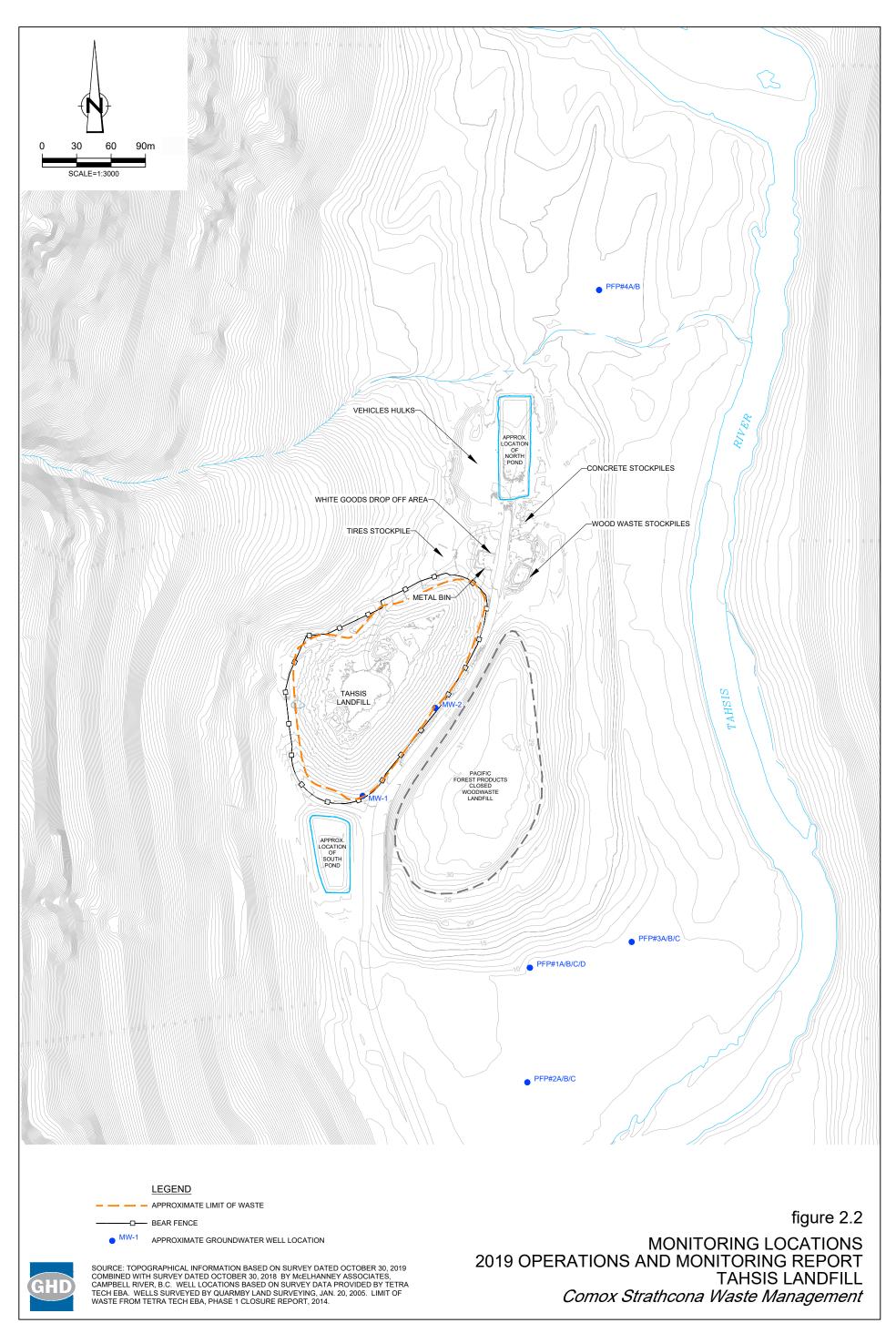
- British Columbia Environmental Reporting BC, 2019. Municipal Solid Waste Disposal in B.C. (1990-2017). Retrieved from http://www.env.gov.bc.ca/soe/indicators/sustainability/municipalsolid-waste.html February 2020
- British Columbia Ministry of Environment, October 4, 1974. Landfill Permit PR-4278
- British Columbia Ministry of Environment, 2014. Municipal Solid Waste Disposal in BC (1990-2014).
- British Columbia Ministry of Environment, June 1996. Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills.
- British Columbia Ministry of Environment and Climate Change Strategy, November 1, 2017. Contaminated Site Regulation B.C. Reg. 375/96, including amendments up to B.C. Reg. 253/2016.
- British Columbia Ministry of Jobs, Economic Development and Competitiveness, 2020. British Columbia Municipal Population Estimates (Sorted by Municipality 2019 Population Size). Retrieved from https://www2.gov.bc.ca/gov/content/data/statistics/people-populationcommunity/population/population-estimates March 2020.
- Conestoga-Rovers & Associates Ltd., April, 2015. 2014 Operations and Monitoring Report, Tahsis Landfill, Tahsis, British Columbia
- EBA a Tetra Tech Company, 2013. Updated Closure Plan Tahsis Landfill Vancouver Island, British Columbia.
- GHD Limited, March 2018. 2017 Operations and Monitoring Report, Tahsis Landfill, Tahsis, British Columbia.
- GHD Limited, March 2017. 2016 Operations and Monitoring Report, Tahsis Landfill, Tahsis, British Columbia.
- GHD Limited, April 2016. 2015 Operations and Monitoring Report, Tahsis Landfill, Tahsis, British Columbia.
- GHD Limited, April 2018. Tahsis Landfill Fill Plan Update, Revision 1.
- GHD Limited, February, 2019. 2018 Closure and Post-Closure Fund Estimates.
- Mulamottil, George, McBean, Edward A., Rovers, Frank, 1999. Constructed Wetlands for the Treatment of Landfill Leachates. United States of America: Lewis Publishers.
- R. H. Guthrie, 2003. Vancouver Island Bedrock Geology.
- R. H. Guthrie and C. R. Penner, 1993. Vancouver Island Surficial Geology.
- Statistics Canada, February 2017. 2016 Canada National Survey.
- Tetra Tech EBA, 2014. Construction and Construction Quality Assurance Report, Tahsis Landfill Surface Water management Upgrade Phase 1 Closure, Tahsis, BC.



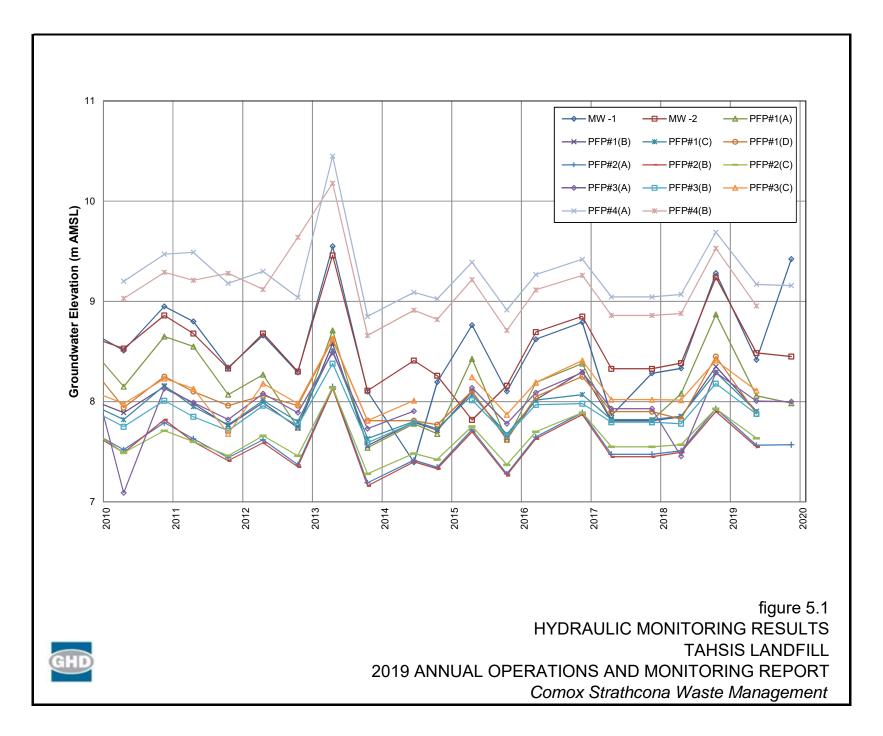
Source: ESRI Topographic Basemap, Accessed 2020

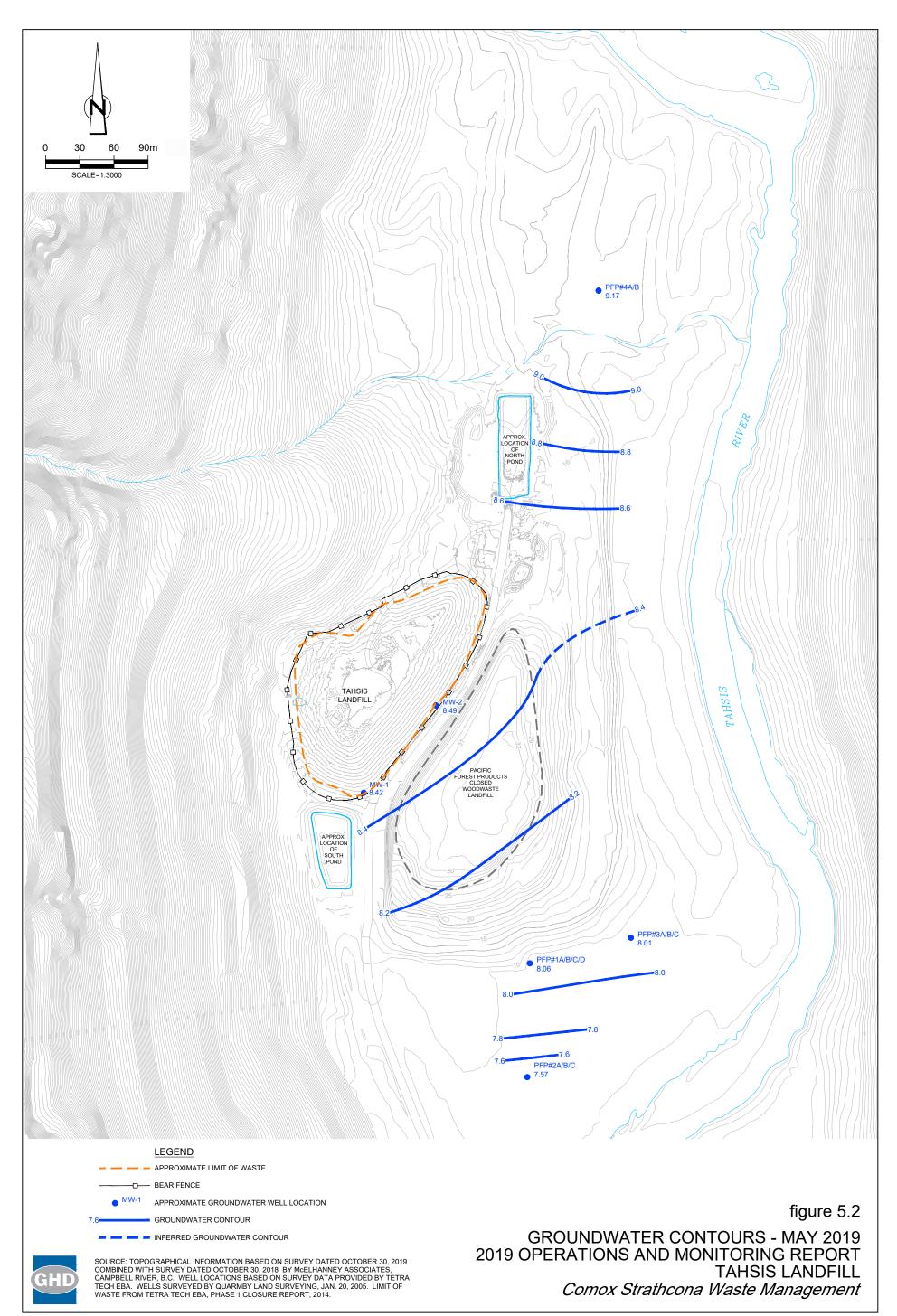





COMOX STRATHCONA WASTE MANAGEMEN GOLD RIVER LANDFILL 2019 OPERATIONS AND MONITORING REPORT

056484 Mar 23, 2020


FIGURE 2.1


### SITE LOCATION

#### GIS File: Q:\GIS\PROJECTS\56000s\56484\Layouts\050\056484(050)GIS-OT001.mxd



N:\CA\Vancouver\Legacy\Drawings\56000s\56484\56484-REPORT\56484-54(051)\56484-54(051)GN\56484-54(051)GN\-VA001.dwg Plot Date: MAR 23, 2020





 $N:CA Vancouver lLegacy lDrawings \\ 56000s \\ 56484 \\ 564084 \\ REPORT \\ 56484 \\ -54(051) \\ 56484 \\ -54(051) \\ GN \\ 56484 \\ -54(051) \\ GN \\ -VA002. \\ dwg Plot Date: MAR 23, 2020 \\ RAR 23, 2020 \\ RAR 24, 2020 \\ RAR 24,$ 

#### Table 3.1

#### Waste Area Population and Projected Population 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

| Year | Estimated Population <sup>(1)(2)</sup> |
|------|----------------------------------------|
| 2019 | 303                                    |
| 2020 | 321                                    |
| 2021 | 341                                    |
| 2022 | 362                                    |
| 2023 | 384                                    |
| 2024 | 407                                    |
| 2025 | 432                                    |

(1) Based on 2019 population estimate sourced from the Government of BC, Ministry of Jobs, Economic Development and Competitiveness.

(2) Annual population decrease rate of 6.10% based on the 3-year average (2016-2019) of estimated changes in population for the Village of Tahsis sourced from the Government of BC, Ministry of Jobs, Economic Development and Competitiveness.

#### Table 4.1

#### Monitoring Locations and Sampling Frequency 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

| Monitoring Location | Мау          | November     |
|---------------------|--------------|--------------|
| Groundwater         |              |              |
| MW-1                |              | $\checkmark$ |
| MW-2                | $\checkmark$ |              |
| PFP#1A              | $\checkmark$ |              |
| PFP#1B              | WL           | -            |
| PFP#1C              | WL           | -            |
| PFP#1D              | WL           | -            |
| PFP#2A              | $\checkmark$ | $\checkmark$ |
| PFP#2B              | WL           | -            |
| PFP#2C              | WL           | -            |
| PFP#3A              | $\checkmark$ | $\checkmark$ |
| PFP#3B              | WL           | -            |
| PFP#3C              | WL           | -            |
| PFP#4A              | $\checkmark$ |              |
| PFP#4B              | WL           | -            |

#### Notes

 $\sqrt{}$  - Sample collected and submitted for laboratory analysis.

WL - Water level measured only.

- - No sample or water level collected.

#### Table 4.2

#### Well Completion Details and Hydraulic Monitoring Results 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

|          | Total    | Top of                  |                   |       |        |        | Screen |          | Water    | Levels   |               |                           |
|----------|----------|-------------------------|-------------------|-------|--------|--------|--------|----------|----------|----------|---------------|---------------------------|
| Location | Depth    | Riser                   | Screened Interval |       |        | Length | Мау    | May-19   |          | /-19     | Screened Unit |                           |
|          | (m BTOR) | (m AMSL) <sup>(1)</sup> | (m B              | TOR)  | (m Al  | MSL)   | (m)    | (m AMSL) | (m BTOR) | (m AMSL) | (m BTOR)      |                           |
| MW-1     | 20.20    | 20.18                   | 12.92             | 15.92 | 7.26   | 4.26   | 3.00   | 8.42     | 11.77    | 9.42     | 10.76         | SILT with gravel          |
| MW-2     | 20.40    | 21.28                   | 14.70             | 17.80 | 6.58   | 3.48   | 3.10   | 8.49     | 12.79    | 8.45     | 12.83         | GRAVEL and SAND with silt |
| PFP#1A   | 4.90     | 9.98                    | 1.90              | 3.40  | 8.08   | 6.58   | 1.50   | 8.06     | 1.92     | 7.99     | 2.00          | Silty GRAVEL and SAND     |
| PFP#1B   | 15.60    | 10.04                   | 12.60             | 14.10 | -2.56  | -4.06  | 1.50   | 7.90     | 2.14     | -        | -             | Silty SAND, trace gravel  |
| PFP#1C   | 29.90    | 9.90                    | 26.80             | 28.30 | -16.90 | -18.40 | 1.50   | 7.90     | 2.00     | -        | -             | Silty GRAVEL and SAND     |
| PFP#1D   | 52.20    | 10.10                   | 48.80             | 50.30 | -38.70 | -40.20 | 1.50   | 7.88     | 2.22     | -        | -             | Silty SAND                |
| PFP#2A   | 5.60     | 9.19                    | 1.90              | 5.30  | 7.29   | 3.89   | 3.40   | 7.57     | 1.63     | 7.57     | 1.62          | Silty GRAVEL and SAND     |
| PFP#2B   | 11.70    | 9.14                    | 9.30              | 10.20 | -0.16  | -1.06  | 0.90   | 7.55     | 1.59     | -        | -             | SAND and GRAVEL           |
| PFP#2C   | 25.00    | 9.09                    | 22.70             | 23.60 | -13.61 | -14.51 | 0.90   | 7.64     | 1.46     | -        | -             | Silty GRAVEL and SAND     |
| PFP#3A   | 5.80     | 9.99                    | 2.70              | 4.30  | 7.29   | 5.69   | 1.60   | 8.01     | 1.98     | 8.00     | 1.99          | Silty GRAVEL and SAND     |
| PFP#3B   | 13.10    | 9.78                    | 10.70             | 11.60 | -0.92  | -1.82  | 0.90   | 7.88     | 1.90     | -        | -             | GRAVEL                    |
| PFP#3C   | 25.30    | 9.83                    | 22.20             | 23.10 | -12.37 | -13.27 | 0.90   | 8.11     | 1.72     | -        | -             | Silty GRAVEL and SAND     |
| PFP#4A   | 7.30     | 14.90                   | 2.70              | 5.75  | 12.20  | 9.15   | 3.05   | 9.17     | 5.73     | 9.16     | 5.74          | GRAVEL and SAND           |
| PFP#4B   | 17.6     | 14.78                   | 14.60             | 15.50 | 0.18   | -0.72  | 0.90   | 8.96     | 5.83     | -        | -             | Silty GRAVEL              |

#### Notes

<sup>(1)</sup> Elevation data provided in the Tahsis Landfill 2013 Annual Monitoring Report (Tetra Tech EBA, 2014).

m BTOR metres below top of riser

m AMSL metres above mean sea level

- Water level not measured.

Page 1 of 1

#### Table 5.3

#### Vertical Gradients 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

| Well ID  | Depth of Borehole       | Top of Screen<br>Elevation | Vertical Distance<br>Between Well<br>Screens | Groundwater<br>Elevation<br>May 2019 | Well Pair           | Vertical Gradient<br>May 2019 |  |
|----------|-------------------------|----------------------------|----------------------------------------------|--------------------------------------|---------------------|-------------------------------|--|
|          | (m AMSL) <sup>(1)</sup> | (m AMSL) <sup>(1)</sup>    | (m)                                          | (m AMSL)                             |                     |                               |  |
| PFP#1(A) | 4.9                     | 8.08                       | 10.64                                        | 8.06                                 | PFP#1(A) & PFP#1(B) | 0.015                         |  |
| PFP#1(B) | 15.6                    | -2.56                      | 14.34                                        | 7.90                                 | PFP#1(B) & PFP#1(C) | 0.0001                        |  |
| PFP#1(C) | 29.9                    | -16.90                     | 21.80                                        | 7.90                                 | PFP#1(C) & PFP#1(D) | 0.001                         |  |
| PFP#1(D) | 52.2                    | -38.70                     | 46.78                                        | 7.88                                 | PFP#1(A) & PFP#1(D) | 0.004                         |  |
| PFP#2(A) | 5.6                     | 7.29                       | 7.45                                         | 7.57                                 | PFP#2(A) & PFP#2(B) | 0.002                         |  |
| PFP#2(B) | 11.7                    | -0.16                      | 13.45                                        | 7.55                                 | PFP#2(B) & PFP#2(C) | -0.006                        |  |
| PFP#2(C) | 25                      | -13.61                     | 20.90                                        | 7.64                                 | PFP#2(A) & PFP#2(C) | -0.003                        |  |
| PFP#3(A) | 5.8                     | 7.29                       | 8.21                                         | 8.01                                 | PFP#3(A) & PFP#3(B) | 0.016                         |  |
| PFP#3(B) | 13.1                    | -0.92                      | 11.45                                        | 7.88                                 | PFP#3(B) & PFP#3(C) | -0.020                        |  |
| PFP#3(C) | 25.3                    | -12.37                     | 19.66                                        | 8.11                                 | PFP#3(A) & PFP#3(C) | -0.005                        |  |
| PFP#4(A) | 7.3                     | 12.20                      | 12.02                                        | 9.17                                 | PFP#4(A) & PFP#4(B) | 0.018                         |  |
| PFP#4(B) | 17.6                    | 0.18                       | -                                            | 8.96                                 | -                   | -                             |  |

#### Notes

<sup>(1)</sup> Elevation data provided in the Tahsis Landfill 2013 Annual Monitoring Report (Tetra Tech EBA, 2014) and GHD field survey, March 2016.

<sup>(2)</sup> Downwards gradient (positive), upwards gradient (negative).

<sup>(3)</sup> Hydraulic monitoring not completed for full set of groundwater monitoring wells in November 2019 Monitoring Event.

m AMSL - metres above mean sea level

#### Table 5.4

#### Groundwater Analytical Results 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

| Sample Location:                              |              |            |                     | MW-1                      | MW-1                      | MW-2                      | MW-2                      | PFP#1A                    | PFP#1A                | PFP#2A                    | PFP#2A                    | PFP#3A                    | PFP#3A                    | PFP#4A                    | PFP#4A                    |
|-----------------------------------------------|--------------|------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Sample ID:                                    |              |            |                     | WG-56484-080519-<br>DB-06 | WG-56484-271119-<br>CT-13 | WG-56484-080519-<br>DB-05 | WG-56484-271119-<br>CT-12 | WG-56484-080519-<br>DB-03 | CT-10                 | WG-56484-080519-<br>DB-04 | WG-56484-271119-<br>CT-11 | WG-56484-080519-<br>DB-02 | WG-56484-271119-<br>CT-09 | WG-56484-080519-<br>DB-01 | WG-56484-271119-<br>CT-08 |
| Sample Date:                                  |              |            | BC CSR              | 5/8/2019                  | 11/27/2019                | 5/8/2019                  | 11/27/2019                | 5/8/2019                  | 11/27/2019            | 5/8/2019                  | 11/27/2019                | 5/8/2019                  | 11/27/2019                | 5/8/2019                  | 11/27/2019                |
|                                               |              | DW         | Schedule 3.2<br>FAW |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |
| Parameters                                    | Units        | а          | b                   |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |
| Field Parameters                              |              |            |                     |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |
| Conductivity, field                           | uS/cm        |            |                     | 307                       | 274                       | 176                       | 264                       | 684                       | 301                   | 426                       | 491                       | 184                       | 410                       | 152                       | 239                       |
| Oxidation reduction potential (ORP), field    | millivolts   |            |                     | 235                       | 111                       | 229                       | 80                        | 252                       | -51                   | 253                       | 58                        | 261                       | 226                       | 234                       | 206                       |
| pH, field<br>Temperature, field               | s.u.         |            |                     | 7.82<br>9.59              | 7.61<br>9.82              | 8.08<br>7.98              | 7.77<br>7.59              | 6.93<br>10.42             | 7.82<br>6.54          | 7.25<br>8.87              | 7.07<br>7.76              | 6.91<br>7.52              | 7.36<br>7.84              | 6.94<br>7.22              | 7.59<br>8.92              |
| Total dissolved solids, field (TDS)           | Deg C<br>g/L |            |                     | 9.59<br>0.199             | 9.82<br>0.178             | 0.114                     | 0.172                     | 0.437                     | 0.196                 | 0.277                     | 0.319                     | 0.120                     | 0.267                     | 0.099                     | 0.92<br>0.155             |
| Turbidity, field                              | NTU          |            |                     | 0.3                       | 0                         | 0.0                       | 0                         | 180                       | 0                     | 37                        | 0                         | 10.7                      | 0                         | 58                        | 14.7                      |
| General Chemistry                             |              |            |                     |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |
| Alkalinity, bicarbonate                       | mg/L         |            |                     | 149                       | 142                       | 92.4                      | 125                       | 288                       | 141                   | 233                       | 273                       | 99.4                      | 217                       | 77.5                      | 115                       |
| Alkalinity, carbonate                         | mg/L         |            |                     | ND 0.5                    | ND 0.5                | ND 0.5                    | ND 0.5                    | ND 0.5                    | ND 0.5                    | ND 0.5                    | ND 0.5                    |
| Alkalinity, hydroxide                         | mg/L         |            |                     | ND 0.5<br>149             | ND 0.5<br>142             | ND 0.5<br>92.4            | ND 0.5<br>125             | ND 0.5<br>288             | ND 0.5<br>141         | ND 0.5<br>233             | ND 0.5<br>273             | ND 0.5<br>99.4            | ND 0.5<br>217             | ND 0.5<br>77.5            | ND 0.5<br>115             |
| Alkalinity, total (as CaCO3)<br>Chloride      | mg/L<br>mg/L | <br>250    | <br>1500            | 2.04                      | 1.27                      | 92.4<br>1.87              | 2.38                      | 2.03                      | 1.36                  | 1.77                      | 1.47                      | 1.63                      | 1.64                      | 1.72                      | 1.12                      |
| Conductivity                                  | uS/cm        |            |                     | 283                       | 252                       | 190                       | 240                       | 527                       | 269                   | 396                       | 447                       | 198                       | 376                       | 162                       | 216                       |
| Fluoride                                      | mg/L         | 1.5        | [b]                 | ND 0.010                  | 0.305                 | ND 0.010                  |
| Hardness                                      | mg/L         |            |                     | 156                       | 123                       | 88.4                      | 117                       | 349                       | 100                   | 223                       | 233                       | 86.3                      | 191                       | 79.2                      | 103                       |
| pH, lab<br>Sulfate                            | s.u.<br>mg/L | <br>500    | <br>[b]             | 8.13 J<br>3.80            | 8.18 J<br>1.93            | 8.28 J<br>2.51            | 8.22 J<br>3.20            | 7.74 J<br>1.92            | 8.23 J<br>3.57        | 8.26 J<br>1.46            | 7.94 J<br>1.74            | 8.29 J<br>1.83            | 8.19 J<br>2.53            | 8.13 J<br>1.69            | 8.18 J<br>1.68            |
|                                               | ing/E        | 000        | [2]                 | 0.00                      |                           | 2.01                      | 0.20                      |                           | 0.07                  |                           |                           |                           | 2.00                      |                           |                           |
| Nutrients                                     |              |            | r-1                 |                           |                           |                           |                           |                           | 0.45                  |                           |                           |                           |                           | 0.0070                    | 0.0050                    |
| Ammonia-N<br>Nitrate (as N)                   | mg/L<br>mg/L | <br>10     | [a]<br>400          | ND 0.0025<br>0.238        | ND 0.0025<br>0.160        | ND 0.0025<br>0.0900       | ND 0.0025<br>0.346        | ND 0.0025<br>0.129        | 3.45<br>ND 0.0025     | ND 0.0025<br>0.175        | ND 0.0025<br>0.348        | ND 0.0025<br>0.0837       | ND 0.0025<br>0.240        | 0.0073<br>0.120           | 0.0058<br>0.0615          |
| Nitrite (as N)                                | mg/L         | 10         | 400<br>[c]          | ND 0.0005                 | ND 0.0005             | ND 0.0005                 | ND 0.0005                 | ND 0.0005                 | ND 0.0005                 | ND 0.0005                 | ND 0.0005                 |
| Nitrite/Nitrate                               | mg/L         | 10         | 400                 | -                         | 0.160                     | -                         | 0.346                     | -                         | ND 0.00255            | -                         | 0.348                     | -                         | 0.240                     | -                         | 0.0615                    |
| Dissolved Metals                              |              |            |                     |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |
| Aluminum (dissolved)                          | ug/L         | 9500       |                     | 3.5                       | 1.8                       | 10.1                      | 7.5                       | ND 0.5                    | 2.1                   | 1.5                       | 1.9                       | 4.4                       | 2.2                       | 12.4                      | 5.8                       |
| Antimony (dissolved)                          | ug/L         | 6          | 90                  | ND 0.05                   | ND 0.05               | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   |
| Arsenic (dissolved)                           | ug/L         | 10         | 50                  | ND 0.05                   | ND 0.05               | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   |
| Barium (dissolved)<br>Beryllium (dissolved)   | ug/L<br>ug/L | 1000<br>8  | 10000<br>1.5        | 2.16<br>ND 0.05           | 1.89<br>ND 0.05           | 0.87<br>ND 0.05           | 4.58<br>ND 0.05           | 5.91<br>ND 0.05           | 0.16<br>ND 0.05       | 2.78<br>ND 0.05           | 3.14<br>ND 0.05           | 0.93<br>ND 0.05           | 2.93<br>ND 0.05           | 0.52<br>ND 0.05           | 2.48<br>ND 0.05           |
| Bismuth (dissolved)                           | ug/L         |            |                     | ND 0.025                  | ND 0.025              | ND 0.025                  | ND 0.025                  | ND 0.025                  | ND 0.025                  | ND 0.025                  | ND 0.025                  |
| Boron (dissolved)                             | ug/L         | 5000       | 12000               | 17                        | ND 5                      | ND 5                      | 22                        | 18                        | 310                   | 11                        | 14                        | ND 5                      | ND 5                      | ND 5                      | ND 5                      |
| Cadmium (dissolved)                           | ug/L         | 5          | [b]                 | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 | 0.0087                    | ND 0.0025             | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 | ND 0.0025                 |
| Caesium (dissolved)<br>Calcium (dissolved)    | ug/L<br>ug/L |            |                     | ND 0.005<br>55000         | ND 0.005<br>43700         | ND 0.005<br>31700         | ND 0.005<br>42500         | ND 0.005<br>126000        | 0.033<br>19900        | 0.015<br>80000            | 0.017<br>84400            | ND 0.005<br>31200         | ND 0.005<br>69700         | ND 0.005<br>27800         | ND 0.005<br>36000         |
| Chromium (dissolved)                          | ug/L         | 50         | 10                  | 0.19                      | 0.13                      | 0.13                      | 0.1                       | ND 0.05                   | ND 0.05               | 0.25                      | 0.18                      | 0.22                      | 0.19                      | ND 0.05                   | 0.16                      |
| Cobalt (dissolved)                            | ug/L         | 20 (i)     | 40                  | ND 0.05                   | ND 0.05               | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   |
| Copper (dissolved)                            | ug/L         | 1500       | [b]                 | 0.28<br>ND 5              | 0.39                      | ND 0.1                    | 0.87                      | 0.61                      | ND 0.1<br>56          | 0.23<br>ND 5              | 0.41                      | ND 0.1                    | 0.49                      | ND 0.1                    | 0.66<br>ND 5              |
| Iron (dissolved)<br>Lead (dissolved)          | ug/L<br>ug/L | 6500<br>10 | <br>[b]             | ND 5<br>ND 0.025          | ND 0.025              | ND 0.025                  | ND 5<br>ND 0.025          | ND 5<br>ND 0.025          | ND 5<br>ND 0.025          | ND 5<br>ND 0.025          | ND 0.025                  |
| Lithium (dissolved)                           | ug/L         | 8          |                     | ND 0.5                    | 3.8                   | ND 0.5                    |
| Magnesium (dissolved)                         | ug/L         |            |                     | 4590                      | 3420                      | 2220                      | 2720                      | 8490                      | 12200                 | 5650                      | 5440                      | 2020                      | 4010                      | 2370                      | 3120                      |
| Manganese (dissolved)                         | ug/L         | 1500       |                     | 0.47<br>ND 0.0025         | ND 0.05<br>ND 0.0025      | ND 0.05<br>ND 0.0025      | ND 0.05<br>ND 0.0025      | 1.99<br>ND 0.0025         | 7.52<br>ND 0.0025     | ND 0.05<br>ND 0.0025      | ND 0.05<br>ND 0.0025      | 0.13<br>ND 0.0025         | ND 0.05<br>ND 0.0025      | 0.32                      | 0.89<br>ND 0.0025         |
| Mercury (dissolved)<br>Molybdenum (dissolved) | ug/L<br>ug/L | 1<br>250   | 0.25<br>10000       | ND 0.0025<br>0.073        | ND 0.0025<br>ND 0.025     | ND 0.0025<br>0.132        | ND 0.0025<br>0.171        | ND 0.0025<br>0.055        | ND 0.0025<br>ND 0.025 | ND 0.0025<br>0.071        | ND 0.0025<br>0.082        | ND 0.0025<br>0.125        | ND 0.0025<br>0.089        | 0.01 J<br>0.105           | ND 0.0025<br>0.091        |
| Nickel (dissolved)                            | ug/L         | 80         | [b]                 | ND 0.25                   | ND 0.25               | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   |
| Phosphorus (dissolved)                        | ug/L         |            |                     | ND 25                     | 661                   | ND 25                     |
| Potassium (dissolved)<br>Rubidium (dissolved) | ug/L         |            |                     | 317<br>ND 0.1             | 126<br>ND 0.1             | 99<br>ND 0.1              | 151<br>ND 0.1             | 946<br>0.38               | 4760<br>1.87          | 491<br>0.22               | 522<br>0.21               | 118<br>ND 0.1             | 164<br>ND 0.1             | ND 25<br>ND 0.1           | 59<br>ND 0.1              |
| Selenium (dissolved)                          | ug/L<br>ug/L | <br>10     | 20                  | 0.067                     | 0.082                     | 0.076                     | 0.095                     | 0.38                      | 0.155                 | 0.054                     | 0.21                      | 0.08                      | 0.083                     | 0.058                     | 0.09                      |
| Silicon (dissolved)                           | ug/L         |            |                     | 1130                      | 1260                      | 755                       | 1000                      | 2210                      | 10500                 | 2270                      | 2380                      | 1100                      | 1870                      | 827                       | 1280                      |
| Silver (dissolved)                            | ug/L         | 20         | [b]                 | ND 0.005                  | ND 0.005              | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  |
| Sodium (dissolved)                            | ug/L         | 200000     |                     | 1350                      | 1150                      | 985                       | 1630                      | 2230                      | 10000                 | 1610                      | 1470                      | 820                       | 1230                      | 838                       | 1040                      |
| Strontium (dissolved)<br>Sulfur (dissolved)   | ug/L<br>ug/L | 2500       |                     | 69.4<br>1280              | 49.2<br>910               | 46.8<br>1000              | 64.7<br>1330              | 154<br>840                | 129<br>2190           | 96.9<br>510               | 102<br>820                | 38.1<br>700               | 82.7<br>1020              | 40.9<br>ND 250            | 49.9<br>840               |
| Tellurium (dissolved)                         | ug/L         |            |                     | ND 0.1                    | ND 0.1                | ND 0.1                    | ND 0.1                    | ND 0.1                    | ND 0.1                    | ND 0.1                    | ND 0.1                    |
| Thallium (dissolved)                          | ug/L         |            | 3                   | ND 0.005                  | ND 0.005              | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  | ND 0.005                  |
| Thorium (dissolved)                           | ug/L         |            |                     | ND 0.05                   | ND 0.05               | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   | ND 0.05                   |
| Tin (dissolved)<br>Titanium (dissolved)       | ug/L<br>ug/L | 2500       | <br>1000            | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15    | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15        | ND 0.05<br>ND 0.15        |
| Tungsten (dissolved)                          | ug/L         | 3          |                     | ND 0.05                   | 0.1                   | ND 0.05                   |
| Uranium (dissolved)                           | ug/L         | 20         | 85                  | 0.181                     | 0.106                     | 0.249                     | 0.276                     | 0.374                     | ND 0.005              | 0.39                      | 0.348                     | 0.184                     | 0.333                     | 0.144                     | 0.17                      |
| Vanadium (dissolved)                          | ug/L         | 20         |                     | ND 0.25                   | ND 0.25               | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   | ND 0.25                   |
| Zinc (dissolved)<br>Zirconium (dissolved)     | ug/L<br>ug/L | 3000       | [b]<br>             | ND 0.5<br>ND 0.03         | ND 0.5<br>ND 0.1          | ND 0.5<br>ND 0.03         | 4.6<br>ND 0.1             | ND 0.5<br>ND 0.03         | ND 0.5<br>ND 0.1      | ND 0.5<br>ND 0.03         | ND 0.5<br>ND 0.1          | ND 0.5<br>ND 0.03         | ND 0.5<br>ND 0.1          | ND 0.5<br>ND 0.03         | 1.4<br>ND 0.1             |
|                                               | ug/L         |            |                     | ND 0.03                   | U.I.                      | 0.05                      |                           | ND 0.03                   | NU U.1                | 0.03                      |                           | 110 0.05                  | NU U.1                    | 10 U.U3                   |                           |
|                                               |              |            |                     |                           |                           |                           |                           |                           |                       |                           |                           |                           |                           |                           |                           |

#### Table 5.5

#### Analytical Table Notes 2019 Operations and Monitoring Report Tahsis Landfill Tahsis, British Columbia

| Notes: |                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENV    | British Columbia Ministry of Environment and Climate Change Strategy                                                                                                                             |
| CSR    | ENV British Columbia Contaminated Sites Regulation (CSR) Schedule 3.2 Generic Numerical Water Standards (June, 2018)                                                                             |
| FAW    | Guideline/standard for the protection of freshwater aquatic life                                                                                                                                 |
| DW     | Guideline/standard for the protection of drinking water                                                                                                                                          |
| а      | CSR DW                                                                                                                                                                                           |
| b      | CSR FAW                                                                                                                                                                                          |
| (*)    | Aesthetic objective. Parameters may impair the taste, smell or colour of water or interfere with the supply of good quality water.<br>Parameters do not cause adverse health effects.            |
| ND     | Not detected at the associated reporting limit.                                                                                                                                                  |
| J      | Estimated concentration.                                                                                                                                                                         |
| R      | Rejected result                                                                                                                                                                                  |
| [a]    | Limit varies with pH.                                                                                                                                                                            |
| [b]    | Limit varies with Hardness.                                                                                                                                                                      |
| (i)    | Cobalt concentrations in groundwater do not exceed the referenced cobalt interim background groundwater concentration estimate. Standard confirmed in email received from ENV, November 7, 2017. |
|        | Exceeds indicated standard or guideline.                                                                                                                                                         |



GHD | 2019 Operations and Monitoring Report | 056484 (51)

# Appendix A Tahsis Landfill Permit # PR-4278

Province of British Columbia Ministry of Environment and Parks

Vancouver Island Region 1 **Regional Headquarters** 2569 Kenworth Road Nanaimo **British Columbia** V9T 4P7 Phone: (604) 758-3951

MAR 8 1988 File: PR-4278

#### REGISTERED MAIL

Village of Tahsis

TAUSIS

P.O. Box 519 Tahsis, British Columbia YOP 1XO

Gentlemen:

#### LETTER OF TRANSMITTAL

Enclosed is a copy of amended Permit No. PR-4278, issued under the provisions of the Waste Management Act, in the name of the Village of Tahsis. Your attention is respectfully directed to the terms and conditions outlined in the Permit.

The administration of this Permit will be carried out by staff from our Regional Office located at 2569 Kenworth Road, Nanaimo, British Columbia, V9T 4P7 (telephone 758-3951). Plans, data and reports pertinent to the Permit are to be submitted to the Regional Waste Manager at this address.

You will note that values have been expressed in the International System of Units (SI). These units are to be used in submitting monitoring results and any other information in connection with this Permit.

This Permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the Permittee.

Yours truly,

G. E. Oldham, P. Eng. Regional Waste Manager

Enclosure

H-33/03/01 FD 02.3.58 DAB 02/03/08



MINISTRY OF ENVIRONMENT

AND PARKS

### PERMIT

Under the Provisions of the Waste Management Act

Village of Tahsis P.O. Box 519 Tahsis, British Columbia YOP 1XO

is hereby authorized to discharge refuse to the land from municipal sources and contaminants to the air from a regulated open burning operation located at Tahsis, British Columbia.

This permit has been issued under the terms and conditions prescribed in the attached Appendices 01, A-1, B-1, and B-2

Regional Waste Manager Permit No. <u>PR-4278</u>

Date issued: <u>June 11, 1976</u> Date amended: <u>December 2, 1981</u> <u>MAR 8</u> 1988

H-33/03/01 HD 32.3.88 ENB 02/05/88

ENV 2093

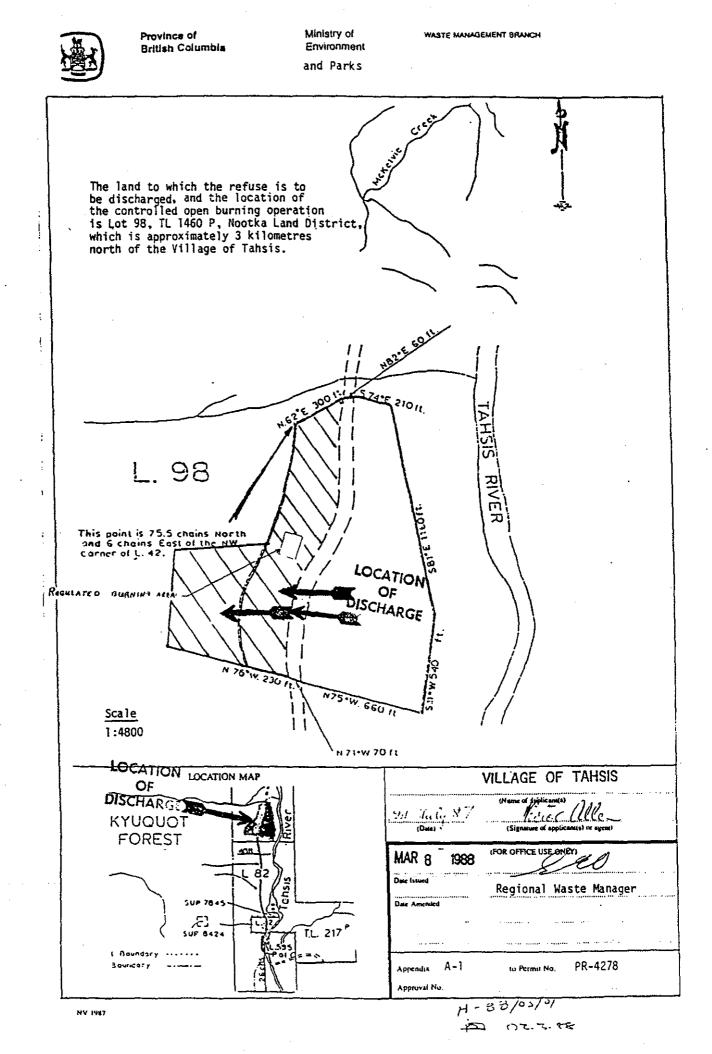


MINISTRY OF ENVIRONMENT WASTE MANAGEMENT BRANCH

#### APPENDIX 01

to Permit No. PR-4278

#### (Refuse)


- (a) The discharge of refuse to which this appendix is applicable is from the Yillage of Tahsis and from a regulated open burning operation as shown on the attached Appendix A-1.
- (b) The rate at which refuse may be discharged is a maximum of 10 000  $m^3/y$ .
- (c) The type of refuse which may be discharged is municipal.
- (d) The components of the refuse which may be discharged are typical municipal refuse, ashes and digested sewage sludge.
- (e) The works authorized are a landfill and regulated open burning operation approximately located as shown on the attached Appendix A-1.
- (f) The land to which the refuse is to be discharged and the location of the regulated open burning operation to which this appendix is appurtenant is an unsurveyed portion of Lot 98, TL 1460P, Nootka Land District, which is approximately 3 kilometres north of the Village of Tahsis.
- (g) The works authorized must be complete and in operation on and from the date of this appendix.

H-88/03/01

Regional Waste Manager

| Date | issued:  | June 11, | 1976    |
|------|----------|----------|---------|
| Date | amended: | December | 2, 1981 |
|      |          | MAR 8    | 1988    |

PAB 02/03/00





MINISTRY OF ENVIRONMENT and Parks Waste Management Branch

APPENDIX to Permit No. PR-4278

#### A. LANDFILL OPERATION

The Permittee shall maintain the landfill authorized in Appendix Ol as a Level "A" operation in accordance with the Pollution Control Objectives for Municipal Type Waste Discharges in British Columbia, dated September, 1975, which, in normal conditions, require that cover material be applied daily. The Regional Waste Manager may vary the frequency of covering when freezing conditions affect normal operation.

#### B. SITE PREPARATION AND RESTORATION

Provision of site access, vehicle safety barriers, surface water diversionary works, firebreaks and site restoration as required, shall be carried out to the satisfaction of the Regional Waste Manager.

#### C. SEGREGATION OF METALLIC WASTES

Segregate large metallic wastes, such as appliances and auto bodies, etc., for disposal in a separate area of the site.

#### D. SEGREGATION OF DIGESTED SEWAGE SLUDGE

The Permittee shall dispose of the digested sewage sludge in a separate area of the site and cover immediately after each discharge.

#### E. WILDLIFE NUISANCE

The subject discharge is one that is of concern because of the possibility of a nuisance or hazard being caused by bears or other animals attracted to the site. Additional works, including, but not limited to, a cleared buffer zone between the trees and the site, fencing around the site, an air curtain incinerator, and moveable bear-proof receptacles will be required, or other operating instructions will be issued by the Regional Waste Manager if such problems arise.

#### F. GROUNDWATER MONITORING WELLS

The Permittee shall install not more than 2 groundwater monitoring wells. The number, locations and structural details of these facilities are subject to the approval of the Regional Waste Manager.

ono =2/03/88

| Date issued: _  | MAR 8 1988                            | LEO                    |
|-----------------|---------------------------------------|------------------------|
| Date amended: _ |                                       | Regional Waste Manager |
| -               | · · · · · · · · · · · · · · · · · · · |                        |
| -               |                                       | 1-32/03/01             |
|                 |                                       | - 02. 3. 44            |

ENV. 2096 w-817

1

i



MINISTRY OF ENVIRONMENT and Parks WASTE MANAGEMENT BRANCH

# APPENDIX B-2

to Permit No. PR-4278

#### G. OPERATIONAL REQUIREMENTS FOR REGULATED OPEN BURNING OF SELECTED NON-PUTRESCIBLE MATERIALS FROM MUNICIPAL AND INDUSTRIAL SOURCES

(a) Area

The operation shall be restricted to an area on the site which is satisfactory to the Regional Waste Manager. If required, this area shall be fenced to restrict access to the burn area stockpile.

(b) Quantity and Frequency

The maximum quantity of wastes to be treated is 200  $m^3$  per burn at a frequency not to exceed 5 burns per year. Each burn shall comprise one continuous period necessary to reduce the stockpiled waste to ashes.

(c) Nature of Wastes

Generally, no waste shall be burned which is unacceptable to the Regional Waste Manager. Acceptable materials may include selected demolition refuse, stumps, trees and similar items, but exclude nuisance causing combustibles such as rubber, plastics, tars, insulation, etc. No putrescible waste shall be burned.

(d) Timing

Burning shall take place only when an attendant is on duty and when conditions promote rapid combustion and dispersion of combustion products. Materials shall be charged to the facility in a manner to promote best combustion and restrict the uplift of lighter constituents. No burning shall take place during periods of fire hazard or when burning is prohibited by other government agencies.

(e) Fire Control

Suitable approved devices shall be available for extinguishing fires to prevent them from spreading to surrounding areas. Such devices may include a pressurized water supply, chemical type fire extinguishers, or an earth stockpile. If an earth stockpile is contemplated for fire control, earth moving equipment shall be available at the site during burning. A fireguard shall be cleared and maintained free of combustible materials.

(f) Residue of Combustion

As soon as the residue of combustion has cooled to ambient temperature it shall be incorporated into the adjacent landfill.

| Date    | issued:  | MAR 8 1988 | Leo :                  |
|---------|----------|------------|------------------------|
| Date    | amended: |            | Regional Waste Manager |
|         |          |            | 1 / 38 / 03/01         |
| 6 w-817 |          |            | 17/ 02.3. EZ.          |
|         |          |            | - Init                 |

ENV. 209

# Appendix B Borehole Logs

| WELL COMPLETION LOG       MELL COMPLETION LOG       PROJECT Regional District of Concord Strattment       DOUTION Long Lands, Eac.       CONTINE       DEVENTION       DEVENTION LOGGER 8. EDEVICE       RELING CONTRACTOR ONNEE Entroprises LTOL, Contrant, E.C.       RELING CONTRACTOR ONNEE ENTROPS       SAMPLE       BLOW       SAMPLE       BLOW       SAMPLE       BLOW       SAMPLE       CODDIES and coast as gravel with space sand<br>and all (DP) redict, Space (Corp. Space)       Sample and Coast as gravel with space sand<br>and all (DP) redict, Space (Corp. Space)       Space (Space Coast as gravel with space sand<br>and all (DP) redict, Space (Corp. Space)       Space (Space Coast as gravel with space sand<br>and all (DP) redict, Space (Corp. Space)       Space (Space Coast as gravel with space sand<br>and all (DP) redict, Space (Corp. Space)       Space (Space Coast as gravel with space sand<br>(Coast as above, dry       Space (Space Coast as gravel with space sand<br>(Coast as above,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         | •        |                   |                | PROJECT NUNBER                                                                       | KELL NU                                                                                                        | NBER              | SHEE                  | T 1_OF 1      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|----------|-------------------|----------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|---------------|
| PROJECT TEND       DRULING CONTRACTOR Drilved Enterorises LTD, Cowletian, E.C.         DRULING WETHOD AND EXDIPACITY ALE RELEY, DRUE ALE DESK.       PROSH UT/1/23       LOGGER B. EDeroid         MATER LEYES, 34.4 feet BSS 17/1/93       START B/1/23       FRICH UT/1/23       LOGGER B. EDeroid         MATER LEYES, 34.4 feet BSS 17/1/93       START B/1/23       FRICH UT/1/23       LOGGER B. EDeroid         Start B       BL       COUNTS       SOIL DESCRIPTION       MELL COMPLETION DIAGRA         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       MELL COMPLETION DIAGRA         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       MELL COMPLETION DIAGRA         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       MELL COMPLETION DIAGRA         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       MELL COMPLETION DIAGRA         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       THE COUNTY         Start B       BL       COUNTS       SOIL NAME, USCS GROUP STWEOL COUNTY       THE COUNTY         Start B       COUNTS       SOIL NEW COUNTY       SOIL STRUCTURE, USCS GROUP STWEOL COUNTY       THE COUNTY         Start B       COUNTS       SOIL NEW COUNTY, WITH SONE SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHM H                    | Ш       |          |                   |                |                                                                                      | WELL COMP                                                                                                      | ETI               | ON LOG                |               |
| PROJECT Integration       DRULING CONTRACTOR Drawel Enterorises LTD, Couldhan, E.C.         DENATION       DRULING CONTRACTOR Drawel Enterorises LTD, Couldhan, E.C.         DRULING WETHOR AND EXAMPLET AL Relay, Drittech 025K       FROM (1/1/03)         MATER LEVES 34.4 feet 805 17/11/93       START B/1/93         SAMPLE       BLOW         SAMPLE       BLOW         SAMPLE       BLOW         SAMPLE       BLOW         SOIL DESCRIPTION       MELL CONFLETION DIAGRA         BL       BLOW         SOIL DESCRIPTION       MELL CONFLETION DIAGRA         COUDIES (BOX) WITH Sone sand       THE DESCRIPT         BL       Coubles and coarse gravel with sone sand       BLOW         SOIL DESCRIPTION, with 200X gravel and       SOIL DESCRIPTION         SOIL DESCRIPTION, with 200X gravel and       SOIL DESCRIPTION         SOIL DESCRIPTION, with 200X gravel and       SOIL DESCRIPTION <th><u> </u></th> <th></th> <th>and Ditt</th> <th></th> <th>Comor-Sicather</th> <th>203</th> <th>LOCATION</th> <th>ansis La</th> <th>ndfill, Tansis,</th> <th>B.C.</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                 |         | and Ditt |                   | Comor-Sicather | 203                                                                                  | LOCATION                                                                                                       | ansis La          | ndfill, Tansis,       | B.C.          |
| MATER LEVELS     START     START     DUCAT     MELL COMPLETION DIAGRA       Sin     SAMPLE     SOIL DESCRIPTION     MELL COMPLETION DIAGRA       Sin     Sin     MARE     SOIL DESCRIPTION     MELL COMPLETION DIAGRA       Sin     Sin     Sin     MARE     USA     Sin       Sin     Sin     Sin     MARE     USA     Sin     MARE       Sin     Sin     Sin     MARE     USA     Sin     Mare       Sin     Sin     Sin     Mare     Sin     Sin     Sin       Sin     Sin     Sin     Sin     Sin<     Sin     Sin       Sin     Sin     Sin     Sin     Sin     Sin     Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | Trial   |          |                   |                | DRILLING CONTRAC                                                                     | TOR Drillwell Enterpr                                                                                          | ises LTD          | <u>Covichan, B</u>    | <u>.c.</u>    |
| KATR     SAMPLE     SOIL     DESCRIPTION     MELL COMPLETION DIAGRA       Str     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y     Y <th>ORTLD</th> <th>IS NET</th> <th></th> <th></th> <th>HENT Air Rotar</th> <th>START 16/11/93</th> <th>FINISH 17/</th> <th>11/93</th> <th>LOGGE</th> <th>R B. Ebersoid</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORTLD                    | IS NET  |          |                   | HENT Air Rotar | START 16/11/93                                                                       | FINISH 17/                                                                                                     | 11/93             | LOGGE                 | R B. Ebersoid |
| Site     Soft with Soft or -dr -dr -dr -dr -dr -dr -dr -dr -dr -d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |          |                   |                | SOIL DESCI                                                                           | the second s |                   | · WELL COMP           | LETION DIAGRA |
| LD - L - L - L - L - L - L - L - L - L -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPTH BELON<br>URFACE (FT | NTERVAL | TYPE AND | RECOVERY<br>(FT.) | 6" -6" -6" -6" | SOIL NAME, USCS GROUP<br>MOISTURE CONTENT, REL<br>OR CONSISTENCY, SOIL<br>MINERALOGY | SYNBOL, COLOR,<br>ATIVE DENSITY<br>STRUCTURE,                                                                  |                   |                       |               |
| L0       Cobbles and coarse gravel with some sand<br>and sitt (GP) reddsh-brown poorty<br>graded, loose, dry, some refuse. (GP). (gnt<br>is in the some sand (GP). (gnt<br>is in the some san                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>6</u> 0               |         | -2       | <u> </u>          |                |                                                                                      |                                                                                                                |                   | I ÷ H                 |               |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>ت</u> ه -             |         |          |                   |                | Cobbles and coarse gr<br>and silt (GP) reddish-b<br>graded, loose, dry, son          | avel with some sand<br>rown poorly<br>te rèfuse. (G?:                                                          | HIN IOCKING II    | sulface seal-         |               |
| XD     As above, dry     Ib     Ib       XD     Ib     Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>100</b> -             |         |          |                   |                | Copples (80%) with so<br>brown, angular, poorly                                      | me sand (GP), ight<br>graded, dry, igP)                                                                        | LL 1 L            | Cement<br>eplug) —    |               |
| X10     As above, dry     Image: Site of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>ا</u> ه -             |         |          |                   |                |                                                                                      |                                                                                                                | LTL<br>eclive sle | (3/8" Hof             |               |
| 300     Sill. reddish-brown, with 20% gravel =nd       5% sand (GM-GP), poorty graded, mc si.       (ML/GP)       Same as above, wel       400       Sill, reddish-brown, with gravel (GM), dark brown, ow       plasticity, well, (ML/GP)       Sill, reddish-brown, with gravel (GM-SP), poorty graded, well       Sill, reddish-brown, with gravel (GM-SP), poorty graded, well, (ML/GP)       Sand, medium to fine, silly, dark gray with sheen, wet, loose, (SM)       Sill, reddish-brown, with gravel (GM-SP), poorty graded, wet. (ML/GP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 20.0 -                 |         |          |                   |                | As above, dry                                                                        |                                                                                                                | Hilling"B"        | tonile seal           |               |
| Silt, reddish-brown, with 20% gravel and<br>S% sand (GM-GP), poorly graded, mc st.<br>(ML/GP)     Image: Silt with 15% gravel (GM), dark brown, own<br>plasticity, wet. (ML/GP)     Image: Silt with 15% gravel (GM), dark brown, own<br>plasticity, wet. (ML/GP)       Silt, reddish-brown, with gravel (GM-32),<br>poorly graded, wet. (ML/GP)     Image: Silt with strain to fine, silty, dark gray with<br>sheen, wet, loose. (SM)       Sand, medium to fine, silty, dark gray with<br>sheen, wet, loose. (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ، تتح                    |         |          |                   |                |                                                                                      |                                                                                                                | لععتا             | Ber                   |               |
| Same as above, wel     Same as above, wel       400     Same as above, wel       Same as above, wel     Same as above, wel       Same as above, wel, (ML/GP)     Same as above, wel, (ML/GP)       Same as above, wel, (ask, gray with gray at the same as above, wel, gray with gray at the same as above, well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300                      |         |          |                   |                | Silt reddish-brown, 4                                                                | rith 20% gravel and                                                                                            |                   |                       | I             |
| 400 -<br>400 -<br>501, reddish-brown, with gravel (GM-32).<br>501, reddish-brown, with gravel (GM-32).<br>500 -<br>500 -<br>50 | 35.0                     |         |          |                   |                | (ML/GP)                                                                              | orly graded, no fl.                                                                                            | .  <br>           |                       |               |
| Sand, medium to fine, sally, dark gras with<br>sheen, wet, loose. (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>400</b>               |         |          |                   |                |                                                                                      |                                                                                                                | Τιιι              | - B sand -            |               |
| Sand, medium to fine, saly, dark gras with<br>sheen, wet, loose. (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 450                      |         |          |                   |                | 1                                                                                    |                                                                                                                |                   | vlonile)<br>wsil Grad |               |
| Sand, medium to fine, saly, dark gray alth<br>sheen, wet, loose. (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 501                      |         |          |                   |                | poony graded, wet.                                                                   | (ner vi 7                                                                                                      | ىلىب              | ck (i) (Ber<br>Graf   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                        | بالبي   |          |                   |                | sit reddish-brown                                                                    | (SM)<br>with gravel (GM-37)                                                                                    | /d                |                       |               |

|                   |                 |                    |                   |                                         | PROJECT NUMBER                                                                                                          | NELL NUMBER                                                                                | SHEET 1 OF 1                                  |                       |
|-------------------|-----------------|--------------------|-------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| MH                | U               |                    |                   |                                         |                                                                                                                         |                                                                                            |                                               |                       |
| YAT               | ION             |                    |                   | Comox-Strathe                           | DRILLING CONTRACTO                                                                                                      | LOCATION Tabais                                                                            | Langfill, Tahsis, B.C.<br>TD., Cowichan, B.C. |                       |
|                   | 6 HET)<br>EVELS | 40.3               | EQUIP             | MENT <u>Air Rota</u><br>5 18/11/93      | ry. Drittech 025K                                                                                                       | FINISH 18/11/93                                                                            | LOGGER B. Ebersold                            |                       |
|                   |                 | SAMPLE             |                   |                                         | SOIL DESCRI                                                                                                             | NOIT                                                                                       | WELL COMPLETION DIAGRA                        | .н                    |
| SURFACE (FT)      | INTERVAL        | TYPE AND<br>NUMBER | RECOVERY<br>(F1.) | BLOW<br>COUNTS<br>6' -6' -6' -6'<br>(N) | SOIL NAME, USCS GROUP S<br>MUISTURE CONTENT, RELA<br>OR CONSISTENCY, SOIL ST<br>MINERALOGY                              | NBOL COLOR,<br>TIVE DENSITY<br>RUCTURE,                                                    |                                               |                       |
|                   |                 |                    |                   |                                         | Gravel, coarse to medium,<br>some sand (GP) light brow<br>loose, dry, some refuse.                                      | angular, kith<br>m poorly graded,<br>(GP)<br>angular, dry,<br>angular, dry,<br>bble and/or | Cement sulface sea                            |                       |
| 8 8<br>111111     |                 | -                  |                   | -                                       | Coarse gravel (GP), gray<br>loose (appears to be col<br>boulders ground up by Gr                                        |                                                                                            | Bentonite seal (3/8" Hotephug)                | 2" PVC blank casing — |
| یے<br>سطح<br><br> |                 |                    |                   |                                         | Gravel, coarse (80%) with<br>and trace of coarse sam<br>(GP/GM)<br>As above with more silt a<br>reddish-brown color. (G | n brown sill (3%)<br>d (GP-GM), moist.                                                     | Bentonite se:                                 | 2" PVC                |
| - 0.2C            |                 |                    |                   |                                         | Gravel, coarse (902) wit<br>silt, dry. (GP)<br>• As above with more grad<br>little tan silt, dry. (GW)                  | h some light crown -<br>-<br>-                                                             |                                               | r slots               |
| 40.0 -            |                 | -                  |                   |                                         | •<br>•                                                                                                                  |                                                                                            |                                               | een hith 0.01' slot   |
| 45.D              |                 |                    |                   |                                         | Gravei, coarse, angular,<br>(GP) dry, (GP) .<br>As above, wet.                                                          | /                                                                                          | Grade 8 sand                                  | L2"PVC scr            |
| 271 -<br>em -     |                 |                    |                   |                                         | Gravel coarse, grading<br>(80 to 70%) with some r<br>(GW), wet. (GW/SW)                                                 | to coarse sand<br>eddish - brown silt<br>-<br>-<br>-<br>-                                  | (Benfonite)<br>- Granusil Gr                  |                       |
| <b>6</b> 00 -     | TTALL           |                    |                   |                                         | As above with less silt                                                                                                 | (10%), wei.                                                                                |                                               |                       |
| 65.0 ·            | 7               |                    | ł                 |                                         |                                                                                                                         | -                                                                                          |                                               |                       |

CIDA St. Kitts - Nevis Drilling Project Date 19.010.9 WATER WELL RECORD Near Tahsis Woodwaste Descriptive Location . we D Drill Driller **Owners** Nome WELL No. LAT. LONG. Dote 1990 Ň UTM Z E UTM 2 Galvanized 3 🗋 Wood t 🛛 Steel B. CASING I.TYPE I 🖾 New Well 2 🗌 Reconditioned 4 Picstic Other 5 Concrete Materials OF WORK 3 Despened 4 🗋 Abandoned units 3 🗋 Jetted Cable tool 2 Bored 8 5/8 In s 2.WORK DIANETER 48 Rotory a□mud b⊠ sir c□reverse METHOD Ins Diometer 8 🗖 Other ŧ1 from 3.WATER I Domestic 2 Municipal 3 Irrigation ft to WELL 4 Commercial & industrial Other <u>Monitoring</u> Ins Thickness 0.322 USE O Other. 12 Welded 2 Comented 3 Threaded 4 New 5 Used 4. DRÍLLING ADDITIVES Perforations : Four PUC piezometers 5. MEASUREMENTS from 12 ground level 2 🗋 top of cosing installed, 8" casing withdrawn Top of casing to ground level ... .ft Open hole, from 179 to 180 tt Diameter 78\_ing SWL 6.WELL LOG DESCRIPTION Grout 1. 9.SCREEN: ID Nominal 2 Plpe Size 0 22 Gravel & sana verv silty. brow 1 Continuous Siot 2 Perforated 3 Louvre Bother <u>2" Slotted PVC</u> Type 23 Other 40 Gravel45and vater beaning Material 1 Stainless Steel 2 Plastic 3 Other\_ set from see to balow ft below ground level 43 SCREEN & BLANKS units ace a rav Length A14.5 (B) 4.5 (C) 4.5 4.5 ft Dlam, 10 ins 43 WaTe Slot Size 020 .020 020 ins .020 from Ħ 86 4 <u>158</u> 77 91 very silty g to ŧŧ Fittings, top Threaded bottom pip 91 Taii 106 Gravel Pack\_ Silica sanc IO.DEVELOPED BY : 12 Surging 106 137 2 🗋 Jetting 3 🖾 Air own 5 Pumping Other. 4 🗋 Baliling Waten II. TEST ID Pump 20 Ball 30 Air Date 1910191 37 148 Grav r edd Rote Beloupm Temp\_\_\_\_ \_°C SWL before test 5 # e mins below PWL\_\_\_ \_ft and of last of\_ .hrs . 148 163 TIME in mins & DRAWDOWN in ft TIME in mins & RECOVERY in ft Wi mine 163 mine-SWL mine -mins\_iSWL Gr 0:5 apm: 8.86 0.5 9 pm 8.76 в Note: SV 6 9pm 8.79 177 179 Sand very 51 ry, gre C 16 apm 8.92 TOP of B"ching 7.WELL LOCATION SKETCH ACCOMMENDED PUMP TIPE RECONNERIOSO PUMP SETTS RECOMMENDED PLA 24 monitoring wellin 12 13.WATER TYPE: 18 fresh 20 solty 30 clear 48 cloudy colour wil to greater wil 1 gos 10 yes 2 10 no 14.WATER ANALYSIS: I 🛛 Hordness me/ 2 🗌 iron .mg/1 3 🗋 Chloride ma/ Wood waste 4 🖸 pH 5 🗋 Cond dump 6 🗋 Temp. Date ť, Øз 15.FINAL WELL COMPLETION DATA Village Well OcothS. Woter Flowing \_ft aom dump site Static Water Level ft. Pressure Heod Back filled ► A - 14, B-49, C-96, D= 168 FT. & Monitor well 16, CONSULTANT Engineerin site To town V NTS td. NEIL WILL 16. CONSULTANT KPA To townt Engineeriu NTS



|             | CIDA St. Kitts - Nevis Drilling Project<br>WATER WELL RECORD Dote 19,010,911,21<br>Descriptive Location Near Tahsis Woodwaste dump, see sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Owners Nome CPFPh Driller Drillwell Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | LAT LONG WELL NO<br>UTM Z IE N UTM Dote 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | I.TYPE     i 🛛 New Well     2 □ Reconditioned     8. CASING:     1 □ Steel     2 □ Galvonized     3 □ Wood       OF WORK     3 □ Deepened     4 □ Abandoned     Materials     4 ⊠ Plostic     5 □ Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 2.WORK 1 Cable tool 2 Bored 3 Jetted<br>METHOD 4 Rotary a mud b air c reverse<br>Other Int<br>Dismeter 8 Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 3.WATER       10 Domestic       20 Municipol       30 Irrigotion       from       0       ft         WELL       40 Commercial       8 industrial       to       85       ft         USE       0 Other       Monitoring       Thickness       0.322       ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •<br>•<br>• | 4. DRILLING ADDITIVES <u>Ni</u> IN Welded 2 Comented 3 Threaded 4 New 5 Use<br>5. MEASUREMENTS from IN ground level 2 top of cosing Performing s Three 2" PVC Pierometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Top of cosing to ground isvel it Installed, B" Casing withdraw,<br>FROM 10 6.WELL LOG DESCRIPTION SWL Open hole, from it Diameter i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 0 5 Dark brown topsolv<br>Type 1 Continuous Slot 2 Pipe Size<br>Type 1 Continuous Slot 2 Perforated 3 Louvre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 5 11 Sand and grave, si/ty<br>11 31 Sand and grave w/wgter Screen & BLANKS: Junit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 3152 sand y gravel, silty brown Diam. 10 2 2 2 1 ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Slot Size         020         020         020         100         111           52         54         Sand, Very silty, brown         from         5.0         2.8         72         fi           10         9.5         31         75         ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 54 70 Sand & gravel, silty brown Fittings, top Threaded bottom 5' tailpipe<br>Gravel Pook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 70       81       Sand + gravel, very silty, grey       10.DEVELOPED BY: 10.Surging       20 Jetting       30 A         40       Bailing       50 Pumping       0 other         81       85       Gravel, sand, silt, y       11.TESTS 10 Pump 20 Boil 30 Air       Dote 19/19/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>.</u>    | Rate See gran Takip °C SWL before test see<br>PWLft end of test of hrs mins below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ,           | TIME in mins & DRAWDOWN in ft     TIME in mins & RECOVERY in f       mins     WL     mins     WL     mins     SWL       M     QPM     6.55     47.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 7.WELL LOCATION SKETCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 12 2" Monitoring well 11 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | I3.WATER TYPE:         10 fresh         2 solty         3 clear         4 & clouk           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |
|             | Woodwaste 40pH 50 Cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | -Village -100 JIII IIII IIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 2_//. Static Water Levelft Pressure Headft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | To town vi Well site NTS NTS Beack filled<br>Well site 16. CONSULTANT KPA Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •••         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

. ....

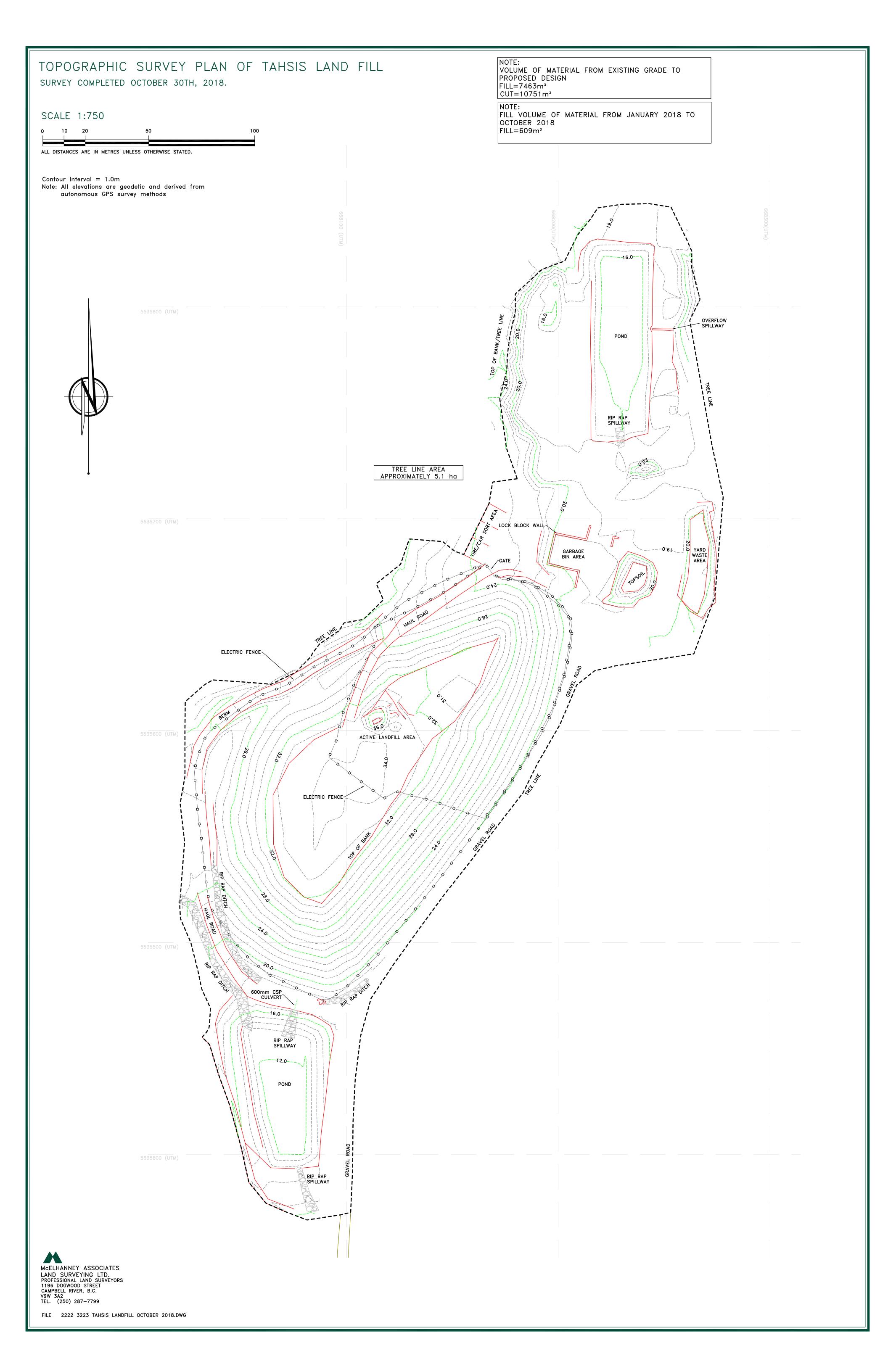
à....

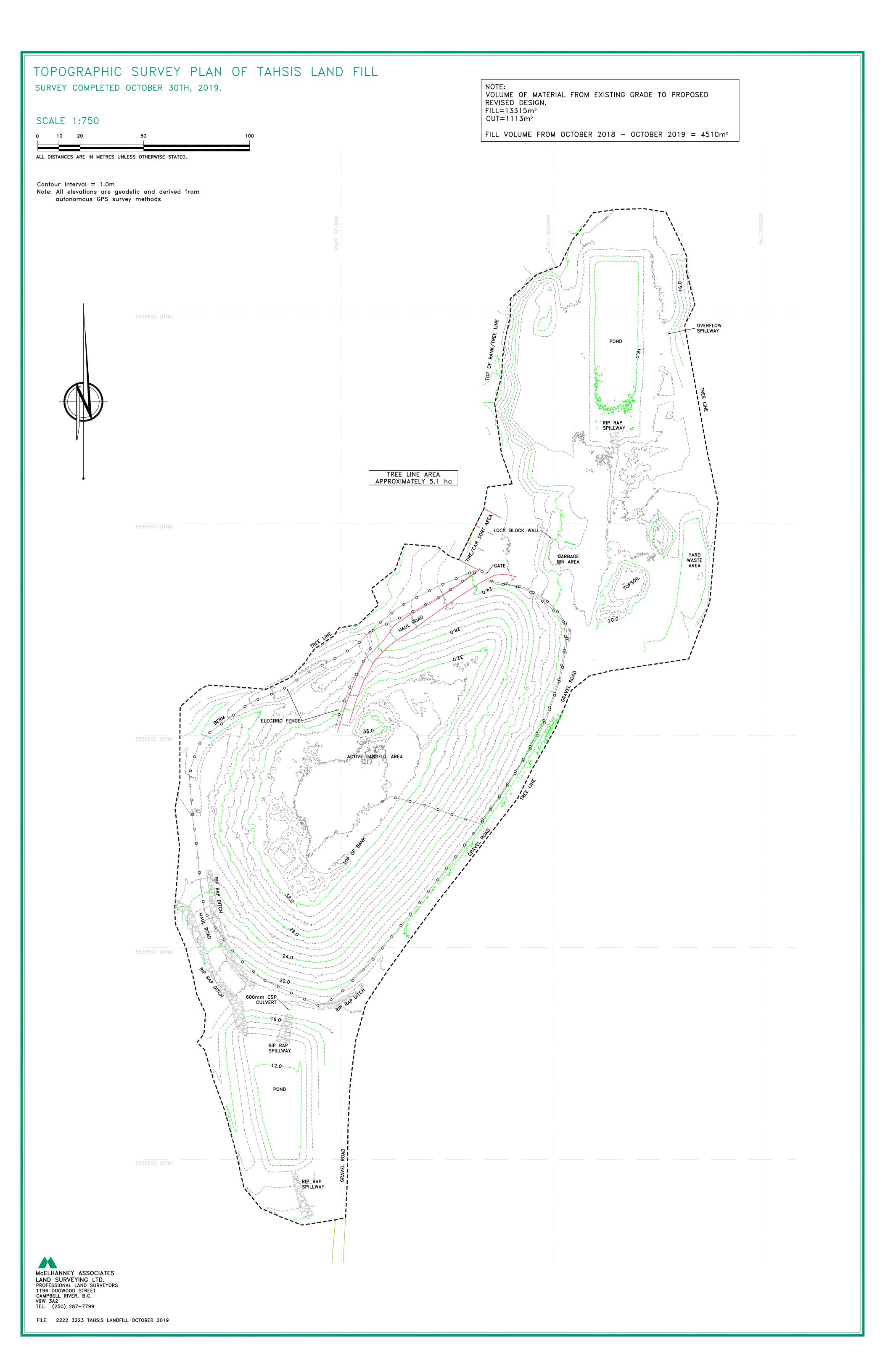
.

Date 09/90 Page 2 of 4 DL Tahsis By Project Subject Monitor Wells Job No. 2690 Ckd. DL Date 11 Well #2 8" steel casing +2.3. BC concrete seal Ground Surface 3 4-5 -Bottom B" casing Water V Table 2" PVC Pipe 10 15 。 。 28 Silica Sand .3/ Pit nun gravel .36. groun feet vepths . Bentonite scal 72 " PVC Slotted PIPE 75 ٥ PVC Tailpipe 79.5 0 asing shoe 0 tom of 85 Borehole Well Diagram NTS STEPH CLASS

÷.,

Date 19.010.911.31 WATER WELL RECORD Near Tahsis weedwaste dump, see sketch Descriptive Location ... Itd. we Drill CPFPL Driller -Owners Nome. 1013 WELL No. LONG. LAT. Dote 1990 M UTM Ē UTH Z 2 Galvanized 3 🗌 Wood I 🖾 Steel 8. CASING: 2 🖸 Reconditioned 4 Plastic Other 1 B New Well I. TYPE 5 Concrete Moterials unlts 4 🗍 Abandoned 3 Deepened OF WORK °in≴ 85/8 -3 🗇 Jetted, orfueten i Cable tool 2 Bored 2.WORK ins o mud b D oir c reverse 4🖾 Rotary Dismeter B METHOD 11 🗍 Other. 0 from ft 1 Domestic 2 Municipal 3 Dirrigation 3.WATER 84 to 40 Commercial & Industrial ins WELL 0.322 Thickness USE 🖸 Other ..... 18 Weided 20 Cemented 30 Threaded 40 New 50 Used NI Perforations; Three - 2" PUC piezometi 4. DRILLING ADDITIVES 5. MEASUREMENTS from 12 ground level 2 1 top of cosing installed, B easing withdrau Open hole, from N/A to Top of cosing to ground level .... ft \_\_\_\_ft Diameter\_ SYL 2 6.WELL LOG DESCRIPTION Ň Grout 1. 5 2 Pipe Size 9.SCREEN : ID Nominal Fi boulders 0 8 Type I Continuous Siot 2 Perforated, 3 Louvre Other -Material I Stainless Steel 2 Plastic 3 Other \* sand very 8 Grave Set from see to belowit below ground level ьi brown units BLANKS SCREEN 8 ft 4-5 B-3 Length 12 23 brown Grave ins え Dlam.1D lns. .020 020 .020 Slot Size 23 26 ish Grave reda <u>70</u> ft 32 from 6 ft 3 11. 35 to 26 36 rave oars a ρĭρ ean Pittings, top Threaded . bottom Tai sana silica Gravel Pook\_ 36 Sand tle arav 40 😳 🖬 Jetting . 3 🖾 A IO.DEVELOPED BY ID Surging 'v n n Other\_ 4 🖸 Balling 5 🖾 Pumping . . . . 11. TEST 1 Pump 2 Boil 3 Air Date 91010191 sandi 4065 coarse Clean Rote\_\_\_\_\_opm Temp \_\_\_\_\_OC SWL before test. \_ft end of test of\_ \_\_min# \_hr**s** \_\_\_ PWL\_\_\_\_ silty prown 76 Gravel Y sand 65 TIME In mins & DRAWDOWN In ft TIME in mins & RECOVERY in pieces of wood mins WE mins SWL mins WL mins WL 79 gravel gras 76. 20 apm 8.46 ft. .... 11 Apm 8.40 Note: SWL from 18 apm 8.27 top of 8"casing sand A B 79 84 ardver Grey silty clay SKETCH INCOMMENDED PUMP SETTURIACCOMMENDED PLAPING LOCATION 7.WELL RECONNENDED PULLE TITE • • • 12. 2" monitoring well in 2-Ý 13.WATER TYPE: ID fresh 2D solty 3 Clear 4 D alo Ŋ \_1 gas 10 yss 20 💶 smell 💶 colour .... 4.WATER ANALYSIS: I 🔲 Hardness ..... .mg/l 3 🗆 Chloride ..... 2 Diron . 5 🗋 Çond. 4 🗋 p H 👘 6 Temp. Date Lwoodwaste ∕ø<sup>3</sup> dump 15. FINAL WELL COMPLETION DATA Village Well Depth 5 \_ft\_Pressure Head. Static Water Level\_\_\_\_ ø Dump Bock filled @Monitor. site B - 40- 80 f wellsite A-16 16. CONSULTANT KPA Engineering To townell NTS


. .


化化物 网 Date og 190 Tahsis Project DL By Page 3 of 4 Subject Monitor Wells Ckd. DL Job No. 2690 Date 11 Well #3 8" steel casing +2.6 BC LAT . concrete seal Ground Surface 3 Bottom B" casing Water V Table 5 2" PVC Pipe 16 °0 32 35. nun gravel groun 40. epths (feet) Bentonite seal 'o W :70 2" PVC Slotted st Pr 73 PVC Tailpipe 80 Casing shoe Bottom of Borchole 84 Well Piagram NTS

|                                          | WATER WE<br>Near Tahsis                            |                                                                           | 9.010.91/41<br>D, see sketer                     |
|------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|
| Descriptive Location _                   |                                                    | Driller Drillwell 1                                                       | -td.                                             |
| Owners Nome                              |                                                    | Driller WELL No.                                                          | 1014                                             |
|                                          |                                                    | 1 N UTM Dote 1992                                                         |                                                  |
| I,TYPE I                                 | New Well 2 Reconditioned                           | 8. CASING: 12 Steel 20 Gal<br>Moteriols 4 Plastic 50 Con                  | vonized 3 Wood                                   |
| OF WORK 3                                | Deepened 4 Abandoned<br>able tool 2 Bored 3 Jetied | otteriois Other                                                           | ins,                                             |
| AN R                                     |                                                    | Digmeter 8                                                                | ft.                                              |
| WATER IND                                | omestic 2 Municipal 3 Irrigation                   | 10 55                                                                     | <u>fti</u><br>. lns.                             |
| USE 🗆 O                                  | ther Monitoring                                    | Thickness 0.322                                                           |                                                  |
| 4.DRILLING ADDI                          | TIVES                                              | Performing Two-2"P                                                        | VC piczomere                                     |
|                                          | Top of casing to ground levelft                    | <u>installed</u> , <u>B" cast</u><br>Open hole, from <u>NA</u> to <u></u> |                                                  |
| ······بور······ با دوانام از می از ایر ا | LLOG DESCRIPTION SWL                               | Grout 1 N/A                                                               |                                                  |
| 0 16 Gr                                  |                                                    | The Allevent Slat 213P                                                    | pe Size<br>erforated 3 🗍 Louvres                 |
| 16 19 51                                 | Ity gravel & peat                                  | Other 27 5/07/0                                                           | astic 3 Other                                    |
| 1934 sil                                 | ty grey graveland                                  | Set from <u>Sec to below</u> tt be<br>SCREEN & BLANKS                     | low ground level                                 |
| 5                                        | the with clay                                      | L'ength A -10 B-3 1                                                       | ottom at ins.                                    |
| 39 ST                                    | ty gravel, angular                                 | Slot Size .020 .020                                                       | 21 feet inte                                     |
| 34 39 51<br>39 54 5                      | Kown water                                         | trom 6 45<br>to 16 48                                                     |                                                  |
| 39 54 5                                  | ilty brown gravel<br>water bearing                 | Fittings, top Threaded bott                                               | sang 5' tailpip                                  |
|                                          |                                                    | Gravel Pack <u>STITES</u>                                                 |                                                  |
|                                          | and dry                                            | 4 🖸 Balling 🛛 5 🖾 Pumping.                                                | 🗌 Other                                          |
|                                          |                                                    | II.TEST 10 Pump 20 Boll 30 Alr<br>Rategpm Temp°C                          | SWL before test                                  |
|                                          |                                                    | PWLft end of test of<br>TIME in mins & DRAWDOWN in ft TIME                | hrsmins                                          |
|                                          |                                                    | mine Wi- mine iSWL mine                                                   | F WL mins i WL                                   |
|                                          |                                                    | A 0.75 9 Pm 19.86 ft.<br>B 10 60 H120.6 No                                | Te: 5 WA 10 -                                    |
| 7.WELL LOCA                              | TION SKETCH                                        | TRECONTRACTO AND A THE THE TO A THE CONTRACTOR                            | A OF 18" C95/11                                  |
|                                          | 114:                                               | 12. 2" monitoring                                                         | well 2-3 4                                       |
|                                          | Tansis                                             | 13.WATER TYPE: 10 fresh 20s                                               | oity 3 Sciedr : 4 🗆 dot -<br>gos 1 🗆 yes : 2 🗖 : |
|                                          |                                                    | colour smell                                                              | 1 gos 1yss £<br>práness mg                       |
|                                          |                                                    | 2 ironmgA 3 Ch                                                            | loridemq                                         |
|                                          | Woodwaste                                          |                                                                           |                                                  |
| Village                                  | \[].                                               | 15.FINAL WELL COMPLETI                                                    | 48 80 WT                                         |
| Dump<br>site                             | rag /                                              |                                                                           | r Flowing                                        |
|                                          | 2 8-Monitor well                                   |                                                                           | 207                                              |
|                                          | - Monitor well<br>site                             | 16.CONSULTANT KPA                                                         | 3-55 feet<br>Engineeriv                          |
|                                          | WALL NTS                                           |                                                                           | 1+4.                                             |
|                                          |                                                    |                                                                           |                                                  |
|                                          |                                                    |                                                                           |                                                  |
|                                          |                                                    |                                                                           | **                                               |

Date 09/90 Project Tahsis Page 4 of 4 Ву PL Subject Monitor Wells ан П Date Ckd. DL Job No. 2690 **心当小**. Well #4 +2.43\_ - 8" steel casing a concrete seal Ground Surface 3 4 - - -- Bottom B" casing -2" PVC Pipe Water Table V 16--21---Open \_\_\_\_\_ Bottom -0 Pit nun grave 00: (feet 0 0 9 S S 0 Bentonite seal e / 0 W ept silica sand-2" PVC 5/offed Pipe 0,-Tailpipe 0 55 T Casing shoe Bottom of - 0 0 57 Barchole Well Diagram

# Appendix C 2018 and 2019 Topographic Surveys





Appendix D 2019 Closure and Post-Closure Fund Estimates Memorandum Excerpt





February 6, 2020

| To:      | Beth Dunlop, Comox Valley Regional District                                                                                         | Ref. No.:        | 056484-51-12     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1        |                                                                                                                                     |                  |                  |
| From:    | Useremy Scott/cs/119-Rev.1                                                                                                          | Tel:             | 604 248 3971     |
|          |                                                                                                                                     |                  |                  |
| CC:      | Deacon Liddy                                                                                                                        |                  |                  |
| Subject: | 2019 Closure and Post-Closure Fund Estimates<br>Comox Strathcona Waste Management<br>Campbell River, Comox Valley, Gold River, Tahs | is and Zeballos. | British Columbia |

# 1. Introduction

This memorandum has been prepared by GHD Limited (GHD) for the Comox Valley Regional District (CVRD) to present the 2019 closure and post-closure (CPC) fund estimates for the following Comox Strathcona (CSWM) Solid Waste Management Centres (SWMCs):

- Campbell River
- Comox Valley Historic Landfill & Engineered Cell
- Gold River
- Tahsis
- Zeballos

Table 1 presents a summary of the CPC cost estimates for the six SWMCs.

# 2. Calculation Methodology

Landfill CPC fund estimates have been calculated based on the methodology for calculating landfill liability described in PS 3270 – Solid Waste Landfill Closure & Post-closure Liability. The following equation presents a summary of the methodology:

E = [A x (B/C)] - D

Where:

- A = Present value of estimated CPC expenditures for landfill site
- B = Total used capacity of the landfill
- C = Total capacity of the landfill (both used and unused)





- D = Total CPC liabilities/expenditures recognized to date
- E = Landfill CPC fund estimate

The estimated total CPC expenditures for the landfill sites were considered to consist of capital and operations expenditures and post-closure operation and maintenance (O&M) costs. Estimated closure costs and scheduling were based on the Comox Strathcona Waste Management (CSWM) 2019-2023 Proposed Financial Plan capital schedule. Post-closure O&M costs were developed by GHD based on experience with similar sized landfills in southwestern BC. Post closure monitoring costs were forecast based on current monitoring costs as contained in the agreement between GHD and the CVRD dated May 14, 2014 for all sites except the Comox Valley WMC Cell 1 which was estimated based on GHD experience at CVRD SWMCs.

## 2.1 Inflation and Discount Rates

All calculations of the present value of CPC costs were completed using the same rates for O&M inflation, construction cost inflation, and discount. The following list presents values and sources for inflation and discount rates applied:

- Construction cost inflation rate of 3.27% based on the 10 year average annual increase in the Vancouver non-residential building construction index from more recent available data (Q3 2019), as calculated by GHD.
- Discount rate of 2.81% based on the Municipal Finance Authority of BC's (MFA) 30 year indicative lending rate, at December 31, 2019, provided by the CSWM.
- Inflation rate of 1.65% based on the average annual percent change of the Consumer Price Index for BC (averaged over 2010-2019 period) as calculated by GHD.

Further details on values used for forecasts are presented below for each SWMC in turn.

# 3. Campbell River

Details of the present value calculations for the Campbell River SWMC are presented in Table 2. At this time the CVRD plans to close the landfill by 2023 when it reaches final capacity. The following list summarizes the key inputs to the CPC Fund Update:

- Closure of the existing landfill footprint will take place in phases between 2020 and 2023 at a total cost of \$10,562,500.
- Annual cost of post closure operations and monitoring of \$90,000.
- Annual cost of post-closure landfill gas collection system operations and maintenance of \$100,000.
- Total used capacity to the end of 2019 of 2,608,492 cubic metres (m<sup>3</sup>) as compared to a total capacity of 2,700,000 m<sup>3</sup> (approximately 96.6% of total capacity used). Remaining airspace was estimated based on McElhanney Survey conducted November 2019 as compared to the top final contours surface prepared by GHD for the Campbell River 2017 Design, Operations and Closure Plan (GHD, 2018) (122,950 m<sup>3</sup>)



less an allowance for the placement of 0.75 metre thick final cover over the fill area (25,000 m<sup>3</sup>). Only the centre portion of the landfill where filling occurred in the last 2 years was included in the analysis.

• 30 year post closure period beginning in 2024.

The estimated present value of the CPC costs of the existing landfill is \$17,536,518. Based on the current airspace capacity used of 96.6 percent, the current landfill CPC liability is \$16,942,175.

# 4. Comox Valley

Details of the present value calculations for the Comox Valley SWMC are presented in Tables 3 and 4. Separate calculations were developed for the historical Comox Valley SWMC and Cell 1 of the Comox Valley SWMC. The following list summarizes the key inputs to the CPC Fund Update for each of the portions of the Comox Valley SWMC:

## Historical Comox Valley SWMC (Table 3)

- Closure of the historical landfill footprint was planned for two phases. The first phase was partially completed in 2015. Phase 2 began in 2018 and will be completed in 2020. The final closure costs are anticipated to be \$200,000 for 2020.
- Annual cost of post closure monitoring of \$90,000.
- Cost of post closure landfill maintenance of \$20,000 every five years.
- Annual cost of post-closure landfill gas collection system operations and maintenance of \$75,000.
- Total used capacity to end of 2019 of 3,390,559 m<sup>3</sup> compared to a total capacity of 3,390,559 m<sup>3</sup>. As 100% of total capacity is used the remaining airspace is 0 m<sup>3</sup>.
- 30 year post closure period beginning in 2020.

The estimated present value of the CPC cost of the historical Comox Valley SWMC landfill is \$4,872,111. Based on the current airspace capacity used of 100% percent, the current landfill CPC liability is \$4,872,111.

## Comox Valley SWMC Cell 1 (Table 4)

- Closure of the Comox Valley SWMC Cell 1 is planned to consist of the following works:
  - Cell 1 design for partial closure and gas collection construction at \$328,000 for year 2020
  - Cell 1 gas collection construction at \$150,000 for year 2021
  - Cell 1 design for partial closure and gas collection construction at \$180,000 for 2022
  - Cell 1 design for partial closure and gas collection construction at \$330,000 for 2023
  - Cell 1 partial closure construction \$870,335 for 2024
- Annual cost of post closure monitoring of \$50,000.
- Cost of post closure landfill maintenance of \$10,000 every five years.
- Annual cost of post-closure LFG collection system operations and maintenance of \$25,000.



- Total used capacity to end of 2019 of 102,219 m<sup>3</sup> as compared to a total capacity of 449,178 m<sup>3</sup> (approximately 22.8% of total capacity used). Remaining airspace was determined based on survey data collected by McElhanney as compared to the base of final design contours from CVRD Fill plan.
- 30 year post closure period beginning in 2025.

The estimated present value of the CPC cost of Cell 1 is \$3,728,053. Based on the current airspace capacity used of 22.4 percent, the current landfill CPC liability is \$848,385.

# 5. Gold River

Details of the present value calculations for the Gold River SWMC are presented in Table 5. The following list summarizes the key inputs to the CPC Fund Update:

- Closure of the existing landfill footprint in 2026 at \$414,600 and 2027 at \$1,210,700.
- Annual cost of post closure operations and monitoring of \$26,500.
- Cost of post closure landfill maintenance of \$20,000 every five years.
- Total used capacity to end of 2019 of 54,870 m<sup>3</sup> as compared to a total capacity of 58,000 m<sup>3</sup> (approximately 94.6% of total capacity used). Remaining airspace was determined based on survey data collected by McElhanney and extrapolated from historical total airspace estimates.
- 30 year post closure period beginning in 2028.

The estimated present value of the CPC cost of the existing landfill is \$2,737,910. Based on the current airspace capacity used of 94.6 percent, the current landfill CPC liability is \$2,590,153.

# 6. Tahsis

Details of the present value calculations for the Tahsis SWMC are presented in Table 6. The following list summarizes the key inputs to the CPC Fund Update:

- Closure of the existing landfill footprint in 2024 at \$100,000 and 2025 at \$725,000.
- Annual cost of post closure operations and monitoring of \$24,000.
- Cost of post closure landfill maintenance of \$20,000 every five years.
- Total used capacity to the end of 2019 of 108,588 m<sup>3</sup> as compared to a total capacity of 113,500 m<sup>3</sup> (approximately 95.7% of total capacity used). Remaining airspace was determined based on survey data collected by McElhanney as compared to final design contours from GHD memo Tahsis Landfill Fill Plan Update dated April 2018, less an allowance for 0.75 m of final cover.
- 30 year post closure period beginning in 2026.

The estimated present value of the CPC of the existing landfill is \$1,710,100. Based on the current airspace capacity used 95.7 percent, the current landfill CPC liability is \$1,636,085.



# 7. Zeballos

Details of the present value calculations for the Zeballos SWMC are presented in Table 7. The following list summarizes the key inputs to the CPC Fund Update:

- Closure of the existing landfill footprint in 2024 at \$96,000 and 2025 at \$480,000.
- Annual cost of post closure operations and monitoring of \$28,000.
- Cost of post closure landfill maintenance of \$20,000 every five years.
- Total used capacity to the end of 2019 of 8967 m<sup>3</sup> as compared to a total estimated capacity of 16,500 m3 (approximately 54.3% of total capacity used) calculated based on topographical surveys conducted in October 2018 and November 2019 and extrapolated based on historical reports.
- 30 year post closure period beginning in 2026.

The estimated present value of the CPC cost of the existing landfill is \$1,512,298. Based on the current airspace capacity used of 54.3 percent the current landfill CPC liability is \$821,865.

# 8. Cortes

GHD is working with the CVRD and MOE to abandon the permit for this site. No further closure costs are to be incurred. Therefore no CPC liability estimate was completed.

### Table 1

## **Cost Estimate Summary** 2019 Closure and Post-Closure Fund Estimates Comox Strathcona Solid Waste Management Centres

| Waste Management Centre          | Estimated<br>Closure<br>Year | timated<br>Iosure<br>Year<br>Year<br>Year<br>Year |               | Inflated Closure/Post<br>Closure Costs to year<br>of Expenditure<br>(3.2688% for<br>construction, 1.6503%<br>for O&M) | PV of Inflated<br>Closure/ Post<br>Closure Costs<br>(MFA 30 year<br>rate 2.81%) | % of Capacity<br>used to<br>December 31,<br>2019 | Dec 31, 2019<br>Closure/ Post<br>Closure Care<br>Liability |
|----------------------------------|------------------------------|---------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Campbell River                   | 2023                         | 4                                                 | \$ 16,262,500 | \$ 22,124,825                                                                                                         | \$ 17,536,518                                                                   | 96.61%                                           | \$ 16,942,175                                              |
| Comox Valley Historical Landfill | 2019                         | 0                                                 | \$ 5,270,000  | \$ 7,408,120                                                                                                          | \$ 4,872,111                                                                    | 100.00%                                          | 4,872,111                                                  |
| Comox Valley Cell 1              | 2023                         | 6                                                 | \$ 4,168,335  | \$ 5,359,319                                                                                                          | \$ 3,728,053                                                                    | 22.76%                                           | 848,385                                                    |
| Gold River                       | 2027                         | 8                                                 | \$ 2,540,300  | \$ 3,929,036                                                                                                          | \$ 2,737,910                                                                    | 94.60%                                           | 2,590,153                                                  |
| Tahsis                           | 2025                         | 6                                                 | \$ 1,665,000  | \$ 2,486,061                                                                                                          | \$ 1,710,100                                                                    | 95.67%                                           | 1,636,085                                                  |
| Zeballos                         | 2025                         | 6                                                 | \$ 1,536,000  | \$ 2,318,573                                                                                                          | \$ 1,512,298                                                                    | 54.35%                                           | 821,865                                                    |
| Current year                     | 2019                         |                                                   | \$ 31,442,135 | \$ 43,625,934                                                                                                         | \$ 32,096,989                                                                   | -                                                |                                                            |

Total Closure/Post closure liability December 31, 2019

\$ 27,710,775

#### Table 2: Landfill Liability - Campbell River Waste Management Centre

| Data:                                             | 31-Dec-19     |        |
|---------------------------------------------------|---------------|--------|
| Landfill Cover Option                             | LLDPE         |        |
| Landfill Closure Date (approximate)               | 2023          |        |
| Post Closure Period (years)                       | 30            |        |
| Current (Dec 2019) Cumulative Waste Volume (m3)   | 2,608,492     | Note 1 |
| Remaining airspace volume (m3)                    | 91,508        | Note 2 |
| Landfill Capacity at Closure (m3)                 | 2,700,000     | Note 2 |
| Closure Construction Costs (2014\$)(2020-2024 PB) | \$ 10,562,500 | Note 3 |
| Annual post closure O&M (2014\$)                  | \$ 90,000     | Note 4 |
| Annual post closure LFG O&M (2014\$)              | \$ 100,000    | Note 5 |
| Construction cost escalation rate                 | 3.2688%       | Note 6 |
| Discount rate                                     | 2.81%         | Note 7 |
| Inflation rate                                    | 1.6503%       | Note 8 |

MFA Dec 2019 = 2.81%

| Year                                                            | Years<br>for FV<br>calcs             | Years<br>for<br>NPV | Constr<br>Cash<br>201 | Flow    | Cas | ntenance<br>sh Flow<br>014 \$ | -  | ash Flow<br>Is Inflation | Pr                                                             | esent Value | Decription of Cost                    |
|-----------------------------------------------------------------|--------------------------------------|---------------------|-----------------------|---------|-----|-------------------------------|----|--------------------------|----------------------------------------------------------------|-------------|---------------------------------------|
| 2014                                                            |                                      |                     |                       |         |     |                               |    |                          |                                                                |             |                                       |
| 2020                                                            | 6                                    | 1                   | \$ 5                  | 525,000 | \$  | -                             | \$ | 636,756                  | \$                                                             | 619,352     | Ph 2 LFG and final cover design       |
| 2021                                                            | 7                                    | 2                   |                       | 150,000 | \$  | -                             | \$ | 7,702,959                |                                                                |             |                                       |
| 2022                                                            | 8                                    | 3                   | \$ 1                  | 125.000 | \$  | -                             | \$ | 161.682                  | \$                                                             | 148.784     | Ph 3 closure design/surface water     |
| 2023                                                            | 9                                    | 4                   | \$ 3,7                | 762,500 | \$  | -                             | \$ | 5,025,703                | \$                                                             | 4,498,373   | Ph 3 LFG and final cover design       |
| 2024                                                            | 10                                   | 5                   |                       |         | \$  | 190.000                       | \$ | 223,789                  | \$                                                             | 194.833     | Ph 3 LFG and final cover construction |
| 2025                                                            | 11                                   | 6                   |                       |         | \$  | 190,000                       | \$ | 227,482                  |                                                                | 192.635     | Annual O&M plus annual LFG O&M        |
| 2026                                                            | 12                                   | 7                   |                       |         | \$  | 190,000                       |    | 231,236                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2027                                                            | 13                                   | 8                   |                       |         | \$  | 190,000                       | \$ | 235,052                  | \$                                                             | 188.314     | Annual O&M plus annual LFG O&M        |
| 2028                                                            | 14                                   | 9                   |                       |         | \$  | 190,000                       |    | 238,931                  | \$                                                             | 186,189     | Annual O&M plus annual LFG O&M        |
| 2029                                                            | 15                                   | 10                  |                       |         | \$  | 190,000                       | \$ | 242,874                  | \$                                                             |             | Annual O&M plus annual LFG O&M        |
| 2030                                                            | 16                                   | 11                  |                       |         | \$  | 190,000                       |    | 246,882                  | \$                                                             | 182,012     | Annual O&M plus annual LFG O&M        |
| 2031                                                            | 17                                   | 12                  |                       |         | \$  | 190,000                       | \$ | 250,957                  | \$                                                             | 179,959     | Annual O&M plus annual LFG O&M        |
| 2032                                                            | 18                                   | 13                  |                       |         | \$  | 190,000                       | \$ | 255,098                  | \$                                                             | 177,929     | Annual O&M plus annual LFG O&M        |
| 2033                                                            | 19                                   | 14                  |                       |         | \$  | 190,000                       | \$ | 259,308                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2034                                                            | 20                                   | 15                  |                       |         | \$  | 190,000                       | \$ | 263,587                  | \$                                                             | 173,938     | Annual O&M plus annual LFG O&M        |
| 2035                                                            | 21                                   | 16                  |                       |         | \$  | 190,000                       | \$ | 267,937                  | \$                                                             | 171,976     | Annual O&M plus annual LFG O&M        |
| 2036                                                            | 22                                   | 17                  |                       |         | \$  | 190,000                       |    | 272,359                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2037                                                            | 23                                   | 18                  |                       |         | \$  | 190,000                       | \$ | 276.853                  | \$                                                             | 168,118     | Annual O&M plus annual LFG O&M        |
| 2038                                                            | 24                                   | 19                  |                       |         | \$  | 190,000                       | \$ | 281,422                  | \$                                                             | 166,221     | Annual O&M plus annual LFG O&M        |
| 2039                                                            | 25                                   | 20                  |                       |         | \$  | 190,000                       | \$ | 286.066                  | \$                                                             | 164.346     | Annual O&M plus annual LFG O&M        |
| 2040                                                            | 26                                   | 21                  |                       |         | \$  | 190,000                       | \$ | 290,787                  | \$                                                             | 162,492     | Annual O&M plus annual LFG O&M        |
| 2041                                                            | 27                                   | 22                  |                       |         | \$  | 190,000                       | \$ | 295,586                  | \$                                                             | 160,659     | Annual O&M plus annual LFG O&M        |
| 2042                                                            | 28                                   | 23                  |                       |         | \$  | 190,000                       | \$ | 300,464                  | \$                                                             | 158,847     | Annual O&M plus annual LFG O&M        |
| 2043                                                            | 29                                   | 24                  |                       |         | \$  | 190,000                       | \$ | 305,423                  | \$                                                             | 157,055     | Annual O&M plus annual LFG O&M        |
| 2044                                                            | 30                                   | 25                  |                       |         | \$  | 190,000                       | \$ | 310,463                  | \$                                                             | 155,284     | Annual O&M plus annual LFG O&M        |
| 2045                                                            | 31                                   | 26                  |                       |         | \$  | 190,000                       | \$ | 315,586                  | \$                                                             | 153,532     | Annual O&M plus annual LFG O&M        |
| 2046                                                            | 32                                   | 27                  |                       |         | \$  | 190,000                       | \$ | 320,794                  | \$                                                             | 151,800     | Annual O&M plus annual LFG O&M        |
| 2047                                                            | 33                                   | 28                  |                       |         | \$  | 190,000                       | \$ | 326,088                  | \$                                                             | 150,088     | Annual O&M plus annual LFG O&M        |
| 2048                                                            | 34                                   | 29                  |                       |         | \$  | 190,000                       |    | 331,470                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2049                                                            | 35                                   | 30                  |                       |         | \$  | 190,000                       |    | 336,940                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2050                                                            | 36                                   | 31                  |                       |         | \$  | 190,000                       |    | 342,500                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2051                                                            | 37                                   | 32                  |                       |         | \$  | 190,000                       |    | 348,152                  | \$                                                             |             | Annual O&M plus annual LFG O&M        |
| 2052                                                            | 38                                   | 33                  |                       |         | \$  | 190,000                       |    | 353,898                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| 2053                                                            | 39                                   | 34                  |                       |         | \$  | 190,000                       |    | 359,738                  |                                                                |             | Annual O&M plus annual LFG O&M        |
| TOTAL                                                           |                                      |                     | \$ 10,56              | 62,500  |     | 5,700,000                     |    |                          |                                                                | 17,536,518  |                                       |
| NPV of Estimated Closure and Post Closure Costs = \$ 17,536,518 |                                      |                     |                       |         |     |                               |    |                          |                                                                |             |                                       |
|                                                                 | andfill Liability in Dec 2019 (\$) = |                     |                       |         |     |                               | \$ | 16,942,175               | NPV x (Cumulative Capacity Used)/(Total<br>Estimated Capacity) |             |                                       |

#### Notes:

Airspace consumed calculated based on operational data for waste received at the site during 2019. (1)

(2) Total airspace remaining and waste in place calculated as of December 31, 2019 based on McElhanney Survey conducted November 2019 as compared to the top final contours surface prepared by GHD for the Campbell River 2017 Design, Operations and Closure Plan (GHD, 2018) less an allowance for the placement of 0.75 metre thick final cover over the fill area. Only the centre portion of the landfill where filling occurred in the last 2 years was included in the analysis. Construction costs in 2014\$

(3)

(4) Annual post closure operating and maintenance costs include environmental monitoring costs.

(5) Annual Post Closure Landfill Gas System costs calculated assuming landfill gas collection system will be finalized in 2021.

Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver non-residential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019). Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019 (6)

(7) (8)

Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01)

#### Table 3: Landfill Liability - Comox Valley Waste Management Centre - Historical Landfill

| Data:                                    | 31-D | ec-19   |      |
|------------------------------------------|------|---------|------|
| Landfill Cover Option                    | LL   | DPE     |      |
| Landfill Closure Date (approximate)      | Earl | y 2020  |      |
| Post Closure Period (years)              | :    | 30      |      |
| Current (Dec 2019) waste in place (m3)   | 3,39 | 0,559   | Note |
| Remaining airspace (Dec 2019) (m3)       |      | 0       | Note |
| Landfill Capacity at Closure (m3)        | 3,39 | 0,559   | Note |
| Closure construction costs (2014\$)      | \$   | 200,000 | Note |
| Annual post closure O&M (2014\$)         | \$   | 90,000  | Note |
| 5th year post closure O&M costs (2014\$) | \$   | 110,000 | Note |
| Annual post closure LFG O&M (2014\$)     | \$   | 75,000  | Note |
| Construction cost escalation rate        | 3.26 | 688%    | Note |
| Discount rate                            | 2.8  | 31%     | Note |
| Inflation rate                           | 1.65 | 503%    | Note |

| Construction Monitoring /                       |                                                     |           |                                  |          |                     |    |           |                     |                                         |                                            |  |
|-------------------------------------------------|-----------------------------------------------------|-----------|----------------------------------|----------|---------------------|----|-----------|---------------------|-----------------------------------------|--------------------------------------------|--|
| Year                                            | Years for                                           | Years for | Costs Maintenance Cash Flow plus |          |                     |    |           | Present Value       | Desciption of Cost                      |                                            |  |
| rear                                            | FV calcs                                            | NPV       | Cash Flow (2014                  | C        | Cash Flow Inflation |    | Pre       | sent value          | Decription of Cost                      |                                            |  |
|                                                 |                                                     |           | \$)                              | (        | (2014 \$)           |    |           |                     |                                         |                                            |  |
| 2014                                            |                                                     |           |                                  |          |                     |    |           |                     |                                         |                                            |  |
| 2020                                            | 6                                                   | 1         | \$ 200,000                       | \$       | 165,000             | \$ | 424,600   | \$                  | 412,995                                 | Cwfd 2019 closure + Annual O&M plus LFG    |  |
| 2021                                            | 7                                                   | 2         |                                  | \$       | 165,000             | \$ | 185,031   | \$                  | 175,054                                 | Annual O&M plus annual LFG O&M             |  |
| 2022                                            | 8                                                   | 3         |                                  | \$       | 165,000             | \$ | 188,084   | \$                  | 173,080                                 | Annual O&M plus annual LFG O&M             |  |
| 0000                                            | 9                                                   |           |                                  | ¢        | 405 000             | ¢  | 014.000   | ¢                   | 191.870                                 | Annual O&M plus annual LFG O&M plus 5 year |  |
| 2023                                            | 9                                                   | 4         |                                  | \$       | 185,000             | \$ | 214,362   | \$                  | 191,870                                 | maintenance                                |  |
| 2024                                            | 10                                                  | 5         |                                  | \$       | 165,000             | \$ | 194,343   | \$                  | 169,197                                 | Annual O&M plus annual LFG O&M             |  |
| 2025                                            | 11                                                  | 6         |                                  | \$       | 165,000             | \$ | 197,550   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2026                                            | 12                                                  | 7         |                                  | \$       | 165,000             | \$ | 200,810   | \$                  | 165,401                                 | Annual O&M plus annual LFG O&M             |  |
| 2027                                            | 13                                                  | 8         |                                  | \$       | 165,000             | \$ | 204,124   | \$                  | 163,535                                 | Annual O&M plus annual LFG O&M             |  |
| 0000                                            |                                                     |           |                                  | <b>^</b> | 405 000             | •  | 000.044   | •                   | 101.000                                 | Annual O&M plus annual LFG O&M plus 5 year |  |
| 2028                                            | 14                                                  | 9         |                                  | \$       | 185,000             | \$ | 232,644   | \$                  | 181,290                                 | maintenance                                |  |
| 2029                                            | 15                                                  | 10        |                                  | \$       | 165,000             | \$ | 210,917   | \$                  | 159,867                                 | Annual O&M plus annual LFG O&M             |  |
| 2030                                            | 16                                                  | 11        |                                  | \$       | 165.000             | \$ | 214,398   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2031                                            | 17                                                  | 12        |                                  | \$       | 165.000             | \$ | 217,936   | \$                  | 156,280                                 | Annual O&M plus annual LFG O&M             |  |
| 2032                                            | 18                                                  | 13        |                                  | \$       | 165,000             | \$ | 221,533   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
|                                                 |                                                     |           |                                  |          |                     |    |           |                     |                                         | Appual O&M plus appual LEG O&M plus 5 year |  |
| 2033                                            | 19                                                  | 14        |                                  | \$       | 185,000             | \$ | 252,484   | \$                  | 171,293                                 | maintenance                                |  |
| 2034                                            | 20                                                  | 15        |                                  | \$       | 165,000             | \$ | 228,905   | \$                  | 151.051                                 | Annual O&M plus annual LFG O&M             |  |
| 2035                                            | 21                                                  | 16        |                                  | \$       | 165.000             |    | 232,682   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2036                                            | 22                                                  | 17        |                                  | \$       | 165.000             | \$ | 236,522   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2037                                            | 23                                                  | 18        |                                  | \$       | 165,000             |    | 240,425   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
|                                                 |                                                     |           |                                  |          |                     |    |           |                     |                                         | Annual O&M plus annual LFG O&M plus 5 year |  |
| 2038                                            | 24                                                  | 19        |                                  | \$       | 185,000             | \$ | 274,016   | \$                  | 161,847                                 | maintenance                                |  |
| 2039                                            | 25                                                  | 20        |                                  | \$       | 165.000             | \$ | 248,426   | \$                  | 142.722                                 | Annual O&M plus annual LFG O&M             |  |
| 2040                                            | 26                                                  | 21        |                                  | \$       | 165.000             | \$ | 252,526   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2041                                            | 27                                                  | 22        |                                  | \$       | 165,000             |    | 256,693   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2042                                            | 28                                                  | 23        |                                  | \$       | 165,000             |    | 260,929   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
|                                                 |                                                     |           |                                  |          |                     |    |           |                     |                                         | Annual O&M plus annual LFG O&M plus 5 year |  |
| 2043                                            | 29                                                  | 24        |                                  | \$       | 185,000             | \$ | 297,385   | \$                  | 152,922                                 | maintenance                                |  |
| 2044                                            | 30                                                  | 25        |                                  | \$       | 165,000             | \$ | 269,612   | \$                  | 134.852                                 | Annual O&M plus annual LFG O&M             |  |
| 2045                                            | 31                                                  | 26        |                                  | \$       | 165.000             |    | 274.062   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2046                                            | 32                                                  | 27        |                                  | \$       | 165,000             |    | 278,585   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
| 2040                                            | 33                                                  | 28        |                                  | \$       | 165,000             |    | 283,182   | \$                  |                                         | Annual O&M plus annual LFG O&M             |  |
|                                                 |                                                     |           |                                  |          |                     |    |           |                     |                                         | Annual O&M plus annual LFG O&M plus 5 year |  |
| 2048                                            | 34                                                  | 29        |                                  | \$       | 185,000             | \$ | 322,747   | \$                  | 144,490                                 | maintenance                                |  |
| 2049                                            | 35                                                  | 30        |                                  | \$       | 165,000             | \$ | 292,606   | \$                  | 127,415                                 | Annual O&M plus annual LFG O&M             |  |
| TOTAL COST \$ 200,000 \$ 5,070,000 \$ 7,408,120 |                                                     |           |                                  |          |                     |    |           | \$                  | 4,872,111                               |                                            |  |
|                                                 | NPV of Estimated Closure and Post Closure Costs =   |           |                                  |          |                     |    | .,,       | \$                  | 4,872,111                               |                                            |  |
|                                                 | INF V OF LStimated Glosure and Fost Glosule COSts = |           |                                  |          |                     |    | ¥         |                     | NPV x (Cumulative Capacity Used)/(Total |                                            |  |
| Landfill                                        | andfill Liability in Dec 2019 (\$) =                |           |                                  |          |                     | \$ | 4,872,111 | Estimated Capacity) |                                         |                                            |  |
| · · · ·                                         |                                                     |           |                                  |          |                     |    |           | Estimated Gapacity) |                                         |                                            |  |

Notes:

(1) Landfill final cover installed Summer 2019

(2) Total site capacity based on Annual Operations and Monitoring Report (GHD, 2017) and revised final contours (EBA, 2017).

(3) Construction costs in 2014\$ from proposed financial plan capital schedules.

(4) Annual post closure operating and maintenance costs include environmental monitoring costs, estimated based on GHD experience at CVRD waste management centres.

(5) Annual Post Closure Landfill Gas System costs calculated assuming landfill gas collection system will be finalized in 2021. Estimated based on GHD experience at similar sites in British Columbia.

(6) Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver nonresidential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019).

(7) Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019

(8) Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01)

#### Table 4: Landfill Liability - Comox Valley Waste Management Centre - Cell 1 (Progressive Closure)

| Data:                                              | 31-Dec-19   |        |
|----------------------------------------------------|-------------|--------|
| Landfill Cover Option                              | LLDPE       | I      |
| Landfill Closure Date (approximate)                | 2024        | ]      |
| Post Closure Period (years)                        | 30          | I      |
| Current (Dec 2019) waste in place (m3)             | 102,219     | Note 1 |
| Remaining airspace (Dec 2019) (m3)                 | 346,960     | Note 2 |
| Landfill Capacity at Closure (m3)                  | 449,178     | Note 3 |
| Closure construction costs (2019\$) (2020-2024 PB) | \$1,858,335 | Note 4 |
| Annual post closure O&M (2019\$)                   | \$50,000    | Note 5 |
| 5th year post closure O&M costs (2019\$)           | \$60,000    | Note 5 |
| Annual post closure LFG O&M (2019\$)               | \$25,000    | Note 6 |
| Construction cost escalation rate                  | 3.2688%     | Note 7 |
| Discount rate                                      | 2.81%       | Note 8 |
| Inflation rate                                     | 1.6503%     | Note 9 |

| Year    | Years for<br>FV calcs | Years for<br>NPV | Ca       | nstruction<br>Costs<br>ash Flow<br>2019 \$) | Ma<br>Ca | onitoring /<br>intenance<br>ash Flow<br>(2019 \$) | Ca | sh Flow plus<br>Inflation | Pre | sent Value | Decription of Cost                                             |
|---------|-----------------------|------------------|----------|---------------------------------------------|----------|---------------------------------------------------|----|---------------------------|-----|------------|----------------------------------------------------------------|
| 2020    | 1                     | 1                | \$       | 328,000                                     |          |                                                   | \$ | 338,722                   | \$  | 329,464    | Cell 1 design for partial closure/gas collection               |
| 2021    | 2                     | 2                | \$       | 150,000                                     |          |                                                   | \$ | 159,967                   | \$  | 151,342    | Cell 1 gas collection construction                             |
| 2022    | 3                     | 3                | \$       | 180,000                                     |          |                                                   | \$ | 198,235                   | \$  | 182,420    | Cell 1 design for partial closure/gas collection constr        |
| 2023    | 4                     | 4                | \$       | 330,000                                     |          |                                                   | \$ | 375,310                   | \$  | 335,930    | Cell 1 design for partial closure/gas collection<br>constr     |
| 2024    | 5                     | 5                | \$       | 870,335                                     |          |                                                   | \$ | 1,022,189                 | \$  |            | Cell 1 partial closure construction                            |
| 2025    | 6                     | 6                |          |                                             | \$       | 75,000                                            | \$ | 82,739                    | \$  | 70,065     |                                                                |
| 2026    | 7                     | 7                |          |                                             | \$       | 75,000                                            |    | 84,105                    | \$  | 69,275     |                                                                |
| 2027    | 8                     | 8                |          |                                             | \$       | 75,000                                            |    | 85,493                    | \$  | 68,493     |                                                                |
| 2028    | 9                     | 9                |          |                                             | \$       | 85,000                                            |    | 98,491                    | \$  | 76,750     |                                                                |
| 2029    | 10                    | 10               |          |                                             | \$       | 75,000                                            |    | 88,338                    | \$  | 66,957     |                                                                |
| 2030    | 11                    | 11               |          |                                             | \$       | 75,000                                            |    | 89,796                    | \$  | 66,201     |                                                                |
| 2031    | 12                    | 12               |          |                                             | \$       | 75,000                                            | \$ | 91,277                    | \$  | 65,454     |                                                                |
| 2032    | 13                    | 13               |          |                                             | \$       | 75,000                                            |    | 92,784                    | \$  | 64,716     |                                                                |
| 2033    | 14                    | 14               |          |                                             | \$       | 85,000                                            |    | 106,890                   | \$  | 72,518     |                                                                |
| 2034    | 15                    | 15               |          |                                             | \$       | 75,000                                            |    | 95,871                    | \$  | 63,264     |                                                                |
| 2035    | 16                    | 16               |          |                                             | \$       | 75,000                                            | \$ | 97,454                    | \$  | 62,551     |                                                                |
| 2036    | 17                    | 17               |          |                                             | \$       | 75,000                                            |    | 99,062                    | \$  | 61,845     |                                                                |
| 2037    | 18                    | 18               |          |                                             | \$       | 75,000                                            |    | 100,697                   | \$  | 61,147     |                                                                |
| 2038    | 19                    | 19               |          |                                             | \$       | 85,000                                            |    | 116,006                   | \$  | 68,519     |                                                                |
| 2039    | 20                    | 20               |          |                                             | \$       | 75,000                                            |    | 104,048                   | \$  | 59,776     |                                                                |
| 2040    | 21                    | 21               |          |                                             | \$       | 75,000                                            |    | 105,765                   | \$  | 59,101     |                                                                |
| 2041    | 22                    | 22               |          |                                             | \$       | 75,000                                            | \$ | 107,510                   | \$  | 58,435     |                                                                |
| 2042    | 23                    | 23               |          |                                             | \$       | 75,000                                            |    | 109,284                   | \$  | 57,776     |                                                                |
| 2043    | 24                    | 24               |          |                                             | \$       | 85,000                                            |    | 125,899                   | \$  | 64,740     |                                                                |
| 2044    | 25                    | 25               |          |                                             | \$       | 75,000                                            |    | 112,921                   | \$  | 56,479     |                                                                |
| 2045    | 26                    | 26               |          |                                             | \$       | 75,000                                            |    | 114,784                   | \$  | 55,842     |                                                                |
| 2046    | 27                    | 27               |          |                                             | \$       | 75,000                                            |    | 116,679                   | \$  | 55,212     |                                                                |
| 2047    | 28                    | 28               |          |                                             | \$       | 75,000                                            |    | 118,604                   | \$  | 54,590     |                                                                |
| 2048    | 29                    | 29               |          |                                             | \$       | 85,000                                            |    | 136,636                   | \$  | 61,170     |                                                                |
| 2049    | 30                    | 30               |          |                                             | \$       | 75,000                                            | \$ | 122,551                   | \$  | 53,365     |                                                                |
| 2050    | 31                    | 31               |          |                                             | \$       | 75,000                                            |    | 124,574                   | \$  | 52,763     |                                                                |
| 2051    | 32                    | 32               |          |                                             | \$       | 75,000                                            |    | 126,629                   | \$  | 52,168     |                                                                |
| 2052    | 33                    | 33               |          |                                             | \$       | 75,000                                            |    | 128,719                   | \$  | 51,579     |                                                                |
| 2053    | 34                    | 34               |          |                                             | \$       | 85,000                                            |    | 148,289                   | \$  | 57,797     |                                                                |
| 2054    | 35                    | 35               |          |                                             | \$       | 75,000                                            |    | 133,003                   | \$  | 50,422     |                                                                |
| TOTAL   |                       |                  | \$       | 1,858,335                                   | \$       | 2,310,000                                         | \$ | 5,359,319                 | \$  | 3,728,053  |                                                                |
| NPV of  | Estimated             | Closure an       | nd Po    | st Closure (                                | Cost     | s =                                               |    |                           | \$  | 3,728,053  |                                                                |
| Landfil | l Liability i         | n Dec 2019       | ) (\$) = |                                             |          |                                                   |    |                           |     | \$848,385  | NPV x (Cumulative Capacity Used)/(Total<br>Estimated Capacity) |

#### Notes:

(1) (2)

Waste in place calculated based on the difference of landfill capacity at closure and remaining airspace Remaining airspace capacity calculated based on comparison of November 2019 survey and liner top of gravel survey pro-rated to Dec 31 2019 using tonnage data provided by CVRD

Landfill capacity at closure calculated based on comparison of Final stage contours and top of stone liner survey Construction costs in 2017\$ from proposed financial plan capital schedules. (3)

(4)

Annual post closure operating and maintenance costs include environmental monitoring costs, estimated based on GHD experience at CVRE (5)

Annual Post Closure Landfill Gas System costs calculated assuming landfill gas collection system will be finalized in 2024. Estimated based (6)

on GHD experience at similar sites in British Columbia. Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver non-residential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019). (7)

Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019. (8)

(9) Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01)

#### Table 5: Landfill Liability Assessment - Gold River Waste Management Centre

| Data:                                    | 31-Dec-19   |        |
|------------------------------------------|-------------|--------|
| Landfill Cover Option                    | GCL         |        |
| Landfill Closure Date (approximate)      | 2027        |        |
| Post Closure Period (years)              | 30          |        |
| Current (Dec 2019) waste in place (m3)   | 54,870      | Note 1 |
| Landfill Capacity at Closure (m3)        | 58,000      | Note 2 |
| Closure Costs (2014\$) (2020-2024 PB)    | \$1,625,300 | Note 3 |
| Annual post closure O&M (2014\$)         | \$26,500    | Note 4 |
| 5th year post closure O&M costs (2014\$) | \$46,500    | Note 4 |
| Construction cost escalation rate        | 3.2688%     | Note 5 |
| Discount rate                            | 2.81%       | Note 6 |
| Inflation rate                           | 1.6503%     | Note 7 |

| Year      | Years<br>for FV                     | Years<br>for PV | Cash Flow (2014\$) |                        |          | Cash Flow<br>us Inflation |                                                               | Present<br>Value | Description of Cost                                |
|-----------|-------------------------------------|-----------------|--------------------|------------------------|----------|---------------------------|---------------------------------------------------------------|------------------|----------------------------------------------------|
|           |                                     |                 | Construction/      | Monitoring             |          |                           |                                                               |                  |                                                    |
| 0044      |                                     |                 | Other              | /Maintenance           | -        |                           | -                                                             |                  |                                                    |
| 2014 2020 | 6                                   | 1               | -                  |                        |          |                           |                                                               |                  |                                                    |
| 2020      | 7                                   | 2               |                    |                        |          |                           |                                                               |                  |                                                    |
| 2021      | 8                                   | 3               | -                  |                        |          |                           |                                                               | -                |                                                    |
| -         | 9                                   |                 | -                  |                        |          |                           |                                                               |                  |                                                    |
| 2023      | 10                                  | 4               | -                  |                        |          | -                         |                                                               | -                |                                                    |
|           | -                                   | 5               |                    |                        | -        | -                         | -                                                             | -                |                                                    |
| 2025      | 11                                  | 7               | <b>*</b> 444.000   |                        | <i>•</i> | -                         | ¢                                                             | -                | Oleanna an sina arian basad an antian 0 DOO stan   |
| 2026      | 12                                  |                 | \$ 414,600         |                        | \$       | 609,897                   | \$                                                            |                  | Closure engineering based on option 2 DOC plan     |
| 2027      | 13                                  | 8               | \$ 1,210,700       | <b>•</b> • • • • • • • | \$       | 1,839,215                 | \$                                                            |                  | Closure construction                               |
| 2028      | 14                                  | 9               |                    | \$ 26,500              | \$       | 33,325                    | \$                                                            |                  | Annual O&M                                         |
| 2029      | 15                                  | 10              |                    | \$ 26,500              | \$       | 33,875                    | \$                                                            | - /              | Annual O&M                                         |
| 2030      | 16                                  | 11              |                    | \$ 26,500              | \$       | 34,434                    | \$                                                            |                  | Annual O&M                                         |
| 2031      | 17                                  | 12              |                    | \$ 26,500              | \$       | 35,002                    | \$                                                            | 25,100           | Annual O&M                                         |
| 2032      | 18                                  | 13              |                    | \$ 46,500              | \$       | 62,432                    | \$                                                            | 43,546           | Annual O&M plus allowance for 5 year maintenance   |
| 2033      | 19                                  | 14              |                    | \$ 26,500              | \$       | 36,167                    | \$                                                            | 24,537           | Annual O&M                                         |
| 2034      | 20                                  | 15              |                    | \$ 26,500              | \$       | 36,763                    | \$                                                            | 24,260           | Annual O&M                                         |
| 2035      | 21                                  | 16              |                    | \$ 26,500              | \$       | 37,370                    | \$                                                            | 23,986           | Annual O&M                                         |
| 2036      | 22                                  | 17              |                    | \$ 26,500              | \$       | 37,987                    | \$                                                            | 23,716           | Annual O&M                                         |
| 2037      | 23                                  | 18              |                    | \$ 46,500              | \$       | 67,756                    | \$                                                            | 41,145           | Annual O&M plus allowance for 5 year maintenance   |
| 2038      | 24                                  | 19              |                    | \$ 26,500              | \$       | 39,251                    | \$                                                            | 23,183           | Annual O&M                                         |
| 2039      | 25                                  | 20              |                    | \$ 26,500              | \$       | 39,899                    | \$                                                            |                  | Annual O&M                                         |
| 2040      | 26                                  | 21              |                    | \$ 26,500              | \$       | 40,557                    | \$                                                            |                  | Annual O&M                                         |
| 2041      | 27                                  | 22              |                    | \$ 26,500              | \$       | 41,226                    | \$                                                            |                  | Annual O&M                                         |
| 2042      | 28                                  | 23              |                    | \$ 46,500              | \$       | 73,535                    | \$                                                            |                  | Annual O&M plus allowance for 5 year maintenance   |
| 2043      | 29                                  | 24              |                    | \$ 26,500              | \$       | 42,598                    | \$                                                            | 21 905           | Annual O&M                                         |
| 2044      | 30                                  | 25              |                    | \$ 26,500              | \$       | 43,301                    | \$                                                            |                  | Annual O&M                                         |
| 2045      | 31                                  | 26              |                    | \$ 26,500              | \$       | 44,016                    | \$                                                            | 1                | Annual O&M                                         |
| 2046      | 32                                  | 27              |                    | \$ 26,500              | \$       | 44,742                    | \$                                                            |                  | Annual O&M                                         |
| 2040      | 33                                  | 28              |                    | \$ 46,500              | \$       | 79,806                    | \$                                                            |                  | Annual O&M plus allowance for 5 year maintenance   |
| 2048      | 34                                  | 29              |                    | \$ 26,500              | \$       | 46,231                    | \$                                                            | 20,697           | Annual O&M                                         |
| 2040      | 35                                  | 30              |                    | \$ 26,500              | \$       | 46,994                    | \$                                                            |                  | Annual O&M                                         |
| 2050      | 36                                  | 31              |                    | \$ 26,500              | \$       | 47,770                    | \$                                                            |                  | Annual O&M                                         |
| 2050      | 37                                  | 32              |                    | \$ 26,500              | \$       | 48,558                    | \$                                                            |                  | Annual O&M                                         |
| 2052      | 38                                  | 33              |                    | \$ 46,500              | \$       | 86,612                    | \$                                                            |                  | Annual O&M plus allowance for 5 year maintenance   |
| 2053      | 39                                  | 34              |                    | \$ 26,500              | \$       | 50,174                    | \$                                                            | 19 556           | Annual O&M                                         |
| 2055      | 40                                  | 35              |                    | \$ 26,500              | \$       | 51,002                    | \$                                                            |                  | Annual O&M                                         |
| 2054      | 41                                  | 36              |                    | \$ 26,500              | \$       | 51,844                    | \$                                                            |                  | Annual O&M                                         |
| 2055      | 42                                  | 37              |                    | \$ 26,500              | \$       | 52,699                    | \$                                                            | 18,901           | Annual O&M                                         |
| 2050      | 43                                  | 38              |                    | \$ 46,500              | \$       | 93,998                    | \$                                                            |                  | Annual O&M plus allowance for 5 year maintenance   |
| OTAL C    | TPOST                               | I               | \$1,625,300        | \$915,000              | 6        | 3,929,036                 | ć                                                             | 2,737,910        |                                                    |
|           |                                     | Closure         | and Post Closure   |                        | 1        | 5,329,030                 |                                                               | 2,737,910        |                                                    |
| VULE      | samateu                             | JUSUIE          | and Fost Glosule   | 00313 =                |          |                           | - P                                                           | 2,131,310        | NB)/ x (Cumulative Capacity Lload)//Tatal Estimate |
| ndfill L  | ndfill Liability in Dec 2019 (\$) = |                 |                    |                        | \$       | 2,590,153                 | NPV x (Cumulative Capacity Used)/(Total Estimate<br>Capacity) |                  |                                                    |

#### Notes:

Remaining capacity as of December 31, 2019 calculated based on surveys conducted October 9 2018 and October 28 2019 prorated to end of (1) 2019.

Total site capacity based on Annual Operations and Monitoring Report (GHD, 2017).

(2) (3) Construction costs in 2014\$ from proposed financial plan capital schedules. Transfer Station costs are not included in closure costs.

Annual post closure operating and maintenance costs include environmental monitoring costs, estimated based on GHD experience at CVRD (4) waste management centres.

Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver non-residential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019). (5)

Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019 (6)

Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01) (7)

#### Table 6: Landfill Liability Assessment - Tahsis Waste Management Centre

| Data:                                    | 31-Dec-20 | )19 |
|------------------------------------------|-----------|-----|
| Landfill Cover Option                    | GCL       |     |
| andfill Closure Date (approximate)       | 2025      |     |
| Post Closure Period (years)              | 30        |     |
| Current (Dec 2019) waste in place (m3)   | 108,588   | 3   |
| Remaining Airspace (m3)                  | 4,912     |     |
| andfill Capacity at Closure (m3)         | 113,500   | )   |
| Closure Costs (2014\$) (2020-2024 PB)    | \$ 825,0  | 000 |
| nnual post closure O&M (2014\$)          | \$ 24,0   | 000 |
| oth year post closure O&M costs (2014\$) | \$ 44,0   | 000 |
| Construction cost escalation rate        | 3.2688%   | Ď   |
| Discount rate                            | 2.81%     |     |
| nflation rate                            | 1.6503%   | Ď   |

| Year       | Years<br>for FV                       | Years<br>for PV |     | Cash Flo             | w (20 | 014\$)                 | Cash Flow       | Pre                                                            | esent Value | Description of Cost                                      |
|------------|---------------------------------------|-----------------|-----|----------------------|-------|------------------------|-----------------|----------------------------------------------------------------|-------------|----------------------------------------------------------|
|            |                                       |                 | Coi | nstruction/<br>Other |       | onitoring<br>intenance |                 |                                                                |             |                                                          |
| 2014       |                                       |                 | \$  | -                    |       |                        | \$<br>-         | \$                                                             | -           |                                                          |
| 2020       | 6                                     | 1               | \$  | -                    |       |                        | \$<br>-         | \$                                                             | -           |                                                          |
| 2021       | 7                                     | 2               | \$  | -                    |       |                        | \$<br>-         | \$                                                             | -           |                                                          |
| 2022       | 7                                     | 3               | \$  | -                    |       |                        | \$<br>-         | \$                                                             | -           |                                                          |
| 2023       | 9                                     | 4               | \$  | -                    |       |                        | \$<br>-         | \$                                                             | -           |                                                          |
| 2024       | 10                                    | 5               | \$  | 100,000              |       |                        | \$<br>137,940   | \$                                                             | 120,092     | Final closure engineering (2014\$) based on Opt 2<br>DOC |
| 2025       | 11                                    | 6               | \$  | 725,000              |       |                        | \$<br>1,032,752 | \$                                                             | 874,549     | Final closure construction/final capping (2014\$)        |
| 2026       | 12                                    | 7               |     |                      | \$    | 24,000                 | \$<br>29,209    | \$                                                             | 24,058      | Annual O&M                                               |
| 2027       | 13                                    | 8               |     |                      | \$    | 24,000                 | \$<br>29,691    | \$                                                             | 23,787      | Annual O&M                                               |
| 2028       | 14                                    | 9               |     |                      | \$    | 24,000                 | \$<br>30,181    | \$                                                             | 23,519      | Annual O&M                                               |
| 2029       | 15                                    | 10              |     |                      | \$    | 24,000                 | \$<br>30,679    | \$                                                             | 23,253      | Annual O&M                                               |
| 2030       | 16                                    | 11              |     |                      | \$    | 44,000                 | \$<br>57,173    | \$                                                             | 42,150      | Annual O&M plus allowance for 5 year maintenance         |
| 2031       | 17                                    | 12              |     |                      | \$    | 24,000                 | \$<br>31,700    | \$                                                             | 22,732      | Annual O&M                                               |
| 2032       | 18                                    | 13              |     |                      | \$    | 24,000                 | \$<br>32,223    | \$                                                             | 22,475      | Annual O&M                                               |
| 2033       | 19                                    | 14              |     |                      | \$    | 24,000                 | \$<br>32,755    | \$                                                             | 22,222      | Annual O&M                                               |
| 2034       | 20                                    | 15              |     |                      | \$    | 24,000                 | \$<br>33,295    | \$                                                             | 21,971      | Annual O&M                                               |
| 2035       | 21                                    | 16              |     |                      | \$    | 44,000                 | \$<br>62,049    | \$                                                             | 39,826      | Annual O&M plus allowance for 5 year maintenance         |
| 2036       | 22                                    | 17              |     |                      | \$    | 24,000                 | \$<br>34,403    | \$                                                             | 21,478      | Annual O&M                                               |
| 2037       | 23                                    | 18              |     |                      | \$    | 24,000                 | \$<br>34,971    | \$                                                             | 21,236      | Annual O&M                                               |
| 2038       | 24                                    | 19              |     |                      | \$    | 24,000                 | \$<br>35,548    | \$                                                             | 20,996      | Annual O&M                                               |
| 2039       | 25                                    | 20              |     |                      | \$    | 24,000                 | \$<br>36,135    | \$                                                             | 20,760      | Annual O&M                                               |
| 2040       | 26                                    | 21              |     |                      | \$    | 44,000                 | \$<br>67,340    | \$                                                             | 37,630      | Annual O&M plus allowance for 5 year maintenance         |
| 2041       | 27                                    | 22              |     |                      | \$    | 24,000                 | \$<br>37,337    | \$                                                             | 20,294      | Annual O&M                                               |
| 2042       | 28                                    | 23              |     |                      | \$    | 24,000                 | \$<br>37,953    | \$                                                             | 20,065      | Annual O&M                                               |
| 2043       | 29                                    | 24              |     |                      | \$    | 24,000                 | \$<br>38,580    | \$                                                             |             | Annual O&M                                               |
| 2044       | 30                                    | 25              |     |                      | \$    | 24,000                 | \$<br>39,216    | \$                                                             | 19,615      | Annual O&M                                               |
| 2045       | 31                                    | 26              |     |                      | \$    | 44,000                 | \$<br>73,083    | \$                                                             | 35,555      | Annual O&M plus allowance for 5 year maintenance         |
| 2046       | 32                                    | 27              |     |                      | \$    | 24,000                 | \$<br>40,521    | \$                                                             | 19,175      | Annual O&M                                               |
| 2047       | 33                                    | 28              |     |                      | \$    | 24,000                 | \$<br>41,190    | \$                                                             | 18,958      | Annual O&M                                               |
| 2048       | 34                                    | 29              |     |                      | \$    | 24,000                 | \$<br>41,870    | \$                                                             | 18,745      | Annual O&M                                               |
| 2049       | 35                                    | 30              |     |                      | \$    | 24,000                 | \$<br>42,561    | \$                                                             | 18,533      | Annual O&M                                               |
| 2050       | 36                                    | 31              |     |                      | \$    | 44,000                 | \$<br>79,316    | \$                                                             | 33,594      | Annual O&M plus allowance for 5 year maintenance         |
| 2051       | 37                                    | 32              |     |                      | \$    | 24,000                 | \$<br>43,977    | \$                                                             | 18,117      | Annual O&M                                               |
| 2052       | 38                                    | 33              |     |                      | \$    | 24,000                 | \$<br>44,703    | \$                                                             | 17,913      | Annual O&M                                               |
| 2053       | 39                                    | 34              |     |                      | \$    | 24,000                 | \$<br>45,441    | \$                                                             | 17,711      | Annual O&M                                               |
| 2054       | 40                                    | 35              |     |                      | \$    | 24,000                 | \$<br>46,190    | \$                                                             | 17,511      | Annual O&M                                               |
| 2055       | 41                                    | 36              |     |                      | \$    | 44,000                 | \$<br>86,080    | \$                                                             | 31,742      | Annual O&M plus allowance for 5 year maintenance         |
| TOTAL C    |                                       |                 | \$  | 825,000              | \$    | 840,000                | \$<br>2,486,061 | \$                                                             | 1,710,100   |                                                          |
| NPV of Es  | stimated                              | Closure         | and | Post Clos            | ure C | osts =                 |                 | \$                                                             | 1,710,100   |                                                          |
| Landfill L | Landfill Liability in Dec 2019 (\$) = |                 |     |                      |       | \$                     | 1,636,085       | NPV x (Cumulative Capacity Used)/(Total<br>Estimated Capacity) |             |                                                          |

#### Notes:

Remaining capacity as of December 31, 2019 calculated based on surveys conducted October 2019 and Final top of cover survey (1) prorated to end of 2019. 0.75m of final cover was assumed and subtracted from thr final top of cover survey

Total site capacity based on Annual Operations and Monitoring Report (GHD, 2017). Construction costs in 2014\$ from proposed financial plan capital schedules. Transfer Station costs are not included in closure costs. (2) (3)

Annual post closure operating and maintenance costs include environmental monitoring costs, estimated based on GHD experience at (4) CVRD waste management centres.

(5) Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver non-residential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019).

Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019. Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01) (7)

<sup>(6)</sup> 

#### Table 7: Landfill Liability Assessment - Zeballos Waste Management Centre

| Data:                                    | 31 | -Dec-2019 |      |
|------------------------------------------|----|-----------|------|
| Landfill Cover Option                    |    | GCL       |      |
| Landfill Closure Date (approximate)      |    | 2025      |      |
| Post Closure Period (years)              |    | 30        |      |
| Current (Dec 2019) waste in place (m3)   |    | 8967      | Note |
| Remaining Airspace (m3)                  |    | 7533      | Note |
| Landfill Capacity at Closure (m3)        |    | 16500     | Note |
| Closure Costs (2014\$) (2019-2023 PB)    | \$ | 576,000   | Note |
| Annual post closure O&M (2014\$)         | \$ | 28,000    | Note |
| 5th year post closure O&M costs (2014\$) | \$ | 48,000    | Note |
| Construction cost escalation rate        | :  | 3.2688%   | Note |
| Discount rate                            |    | 2.81%     | Note |
| Inflation rate                           |    | 1.6503%   | Note |

| Year                                  | Years<br>for FV | Years<br>for PV |    | Cash Flo             | w (2 | 014\$)                 | C  | ash Flow plus<br>Inflation | N       | et Present<br>Value                                            | Description of Cost                                 |
|---------------------------------------|-----------------|-----------------|----|----------------------|------|------------------------|----|----------------------------|---------|----------------------------------------------------------------|-----------------------------------------------------|
|                                       |                 |                 |    | nstruction/<br>Other |      | onitoring<br>intenance |    |                            |         |                                                                |                                                     |
| 2014                                  |                 |                 |    |                      |      |                        |    |                            |         |                                                                |                                                     |
| 2020                                  | 6               | 1               |    |                      |      |                        |    |                            |         |                                                                |                                                     |
| 2021                                  | 7               | 2               |    |                      |      |                        |    |                            |         |                                                                |                                                     |
| 2022                                  | 8               | 3               |    |                      |      |                        |    |                            |         |                                                                |                                                     |
| 2023                                  | 9               | 4               |    |                      |      |                        |    |                            |         |                                                                |                                                     |
| 2024                                  | 10              | 5               | \$ | 96,000               |      |                        | \$ | 132,422                    | \$      | 115,288                                                        | Final closure engineering, option 2 DOC plan        |
| 2025                                  | 11              | 6               | \$ | 480,000              |      |                        | \$ | 683,753                    | \$      | 579,012                                                        | Final closure construction/final capping            |
| 2026                                  | 12              | 7               |    |                      | \$   | 28,000                 | \$ | 34,077                     | \$      | 28,068                                                         | Annual O&M                                          |
| 2027                                  | 13              | 8               |    |                      | \$   | 28,000                 | \$ | 34,639                     | \$      | 27,751                                                         | Annual O&M                                          |
| 2028                                  | 14              | 9               |    |                      | \$   | 28,000                 | \$ | 35,211                     | \$      | 27,438                                                         | Annual O&M                                          |
| 2029                                  | 15              | 10              |    |                      | \$   | 28,000                 | \$ | 35,792                     | \$      | 27,129                                                         | Annual O&M                                          |
| 2030                                  | 16              | 11              |    |                      | \$   | 48,000                 | \$ | 62,370                     | \$      | 45,982                                                         | Annual O&M plus allowance for 5 year<br>maintenance |
| 2031                                  | 17              | 12              |    |                      | \$   | 28,000                 | \$ | 36,983                     | \$      | 26,520                                                         | Annual O&M                                          |
| 2032                                  | 18              | 13              |    |                      | \$   | 28,000                 | \$ | 37,593                     | \$      | 26,221                                                         | Annual O&M                                          |
| 2033                                  | 19              | 14              |    |                      | \$   | 28,000                 | \$ | 38,214                     | \$      | 25,925                                                         | Annual O&M                                          |
| 2034                                  | 20              | 15              |    |                      | \$   | 28,000                 | \$ | 38,844                     | \$      | 25,633                                                         | Annual O&M                                          |
| 2035                                  | 21              | 16              |    |                      | \$   | 48,000                 | \$ | 67,689                     | \$      | 43,446                                                         | Annual O&M plus allowance for 5 year<br>maintenance |
| 2036                                  | 22              | 17              |    |                      | \$   | 28,000                 | \$ | 40,137                     | \$      | 25,058                                                         | Annual O&M                                          |
| 2037                                  | 23              | 18              |    |                      | \$   | 28,000                 | \$ | 40,799                     | \$      | 24,775                                                         | Annual O&M                                          |
| 2038                                  | 24              | 19              |    |                      | \$   | 28,000                 | \$ | 41,473                     | \$      | 24,496                                                         | Annual O&M                                          |
| 2039                                  | 25              | 20              |    |                      | \$   | 28,000                 | \$ | 42,157                     | \$      | 24,219                                                         | Annual O&M                                          |
| 2040                                  | 26              | 21              |    |                      | \$   | 48,000                 | \$ | 73,462                     | \$      | 41,051                                                         | Annual O&M plus allowance for 5 year<br>maintenance |
| 2041                                  | 27              | 22              |    |                      | \$   | 28,000                 | \$ | 43,560                     | \$      | 23,676                                                         | Annual O&M                                          |
| 2042                                  | 28              | 23              |    |                      | \$   | 28,000                 | \$ | 44,279                     | \$      | 23,409                                                         | Annual O&M                                          |
| 2043                                  | 29              | 24              |    |                      | \$   | 28,000                 | \$ | 45,010                     | \$      | 23,145                                                         | Annual O&M                                          |
| 2044                                  | 30              | 25              |    |                      | \$   | 28,000                 | \$ | 45,752                     | \$      | 22,884                                                         | Annual O&M                                          |
| 2045                                  | 31              | 26              |    |                      | \$   | 48,000                 | \$ | 79,727                     | \$      | 38,787                                                         | Annual O&M plus allowance for 5 year maintenance    |
| 2046                                  | 32              | 27              |    |                      | \$   | 28,000                 | \$ | 47,275                     | \$      | 22,371                                                         | Annual O&M                                          |
| 2047                                  | 33              | 28              |    |                      | \$   | 28,000                 | \$ | 48,055                     | \$      | 22,118                                                         | Annual O&M                                          |
| 2048                                  | 34              | 29              |    |                      | \$   | 28,000                 | \$ | 48,848                     | \$      | 21,869                                                         | Annual O&M                                          |
| 2049                                  | 35              | 30              |    |                      | \$   | 28,000                 | \$ | 49,654                     | \$      | 21,622                                                         | Annual O&M                                          |
| 2050                                  | 36              | 31              |    |                      | \$   | 48,000                 | \$ | 86,526                     | \$      | 36,648                                                         | Annual O&M plus allowance for 5 year<br>maintenance |
| 2051                                  | 37              | 32              | 1  |                      | \$   | 28,000                 | \$ | 51,307                     | \$      | 21,137                                                         | Annual O&M                                          |
| 2052                                  | 38              | 33              |    |                      | \$   | 28,000                 | \$ | 52,153                     | \$      | 20,899                                                         | Annual O&M                                          |
| 2053                                  | 39              | 34              | 1  |                      | \$   | 28,000                 | \$ | 53,014                     | \$      | 20,663                                                         | Annual O&M                                          |
| 2054                                  | 40              | 35              |    |                      | \$   | 28,000                 | \$ | 53,889                     | \$      | 20,430                                                         | Annual O&M                                          |
| 2055                                  | 41              | 36              |    |                      | \$   | 48,000                 | \$ | 93,906                     | \$      | 34,627                                                         | Annual O&M plus allowance for 5 year<br>maintenance |
| TOTAL C                               | OST             | •               | \$ | 576,000              | \$   | 960,000                | \$ | 2,318,573                  | \$      | 1,512,298                                                      |                                                     |
|                                       |                 | Closure         |    | Post Closu           |      |                        |    | ,,,                        | \$      | 1,512,298                                                      |                                                     |
| Landfill Liability in Dec 2019 (\$) = |                 |                 |    |                      |      |                        |    | \$                         | 821,865 | NPV x (Cumulative Capacity Used)/(Total<br>Estimated Capacity) |                                                     |

#### Notes:

Remaining capacity as of December 31, 2019 calculated based on surveys conducted November 2019 and top of waste survey prorated (1) to end of 2019.

(2)

Total site capacity based on Annual Operations and Monitoring Report (GHD, 2017). Construction costs in 2014\$ from proposed financial plan capital schedules. Transfer Station costs are not included in closure costs. (3)

Annual post closure operating and maintenance costs include environmental monitoring costs, estimated based on GHD experience at (4) CVRD waste management centres.

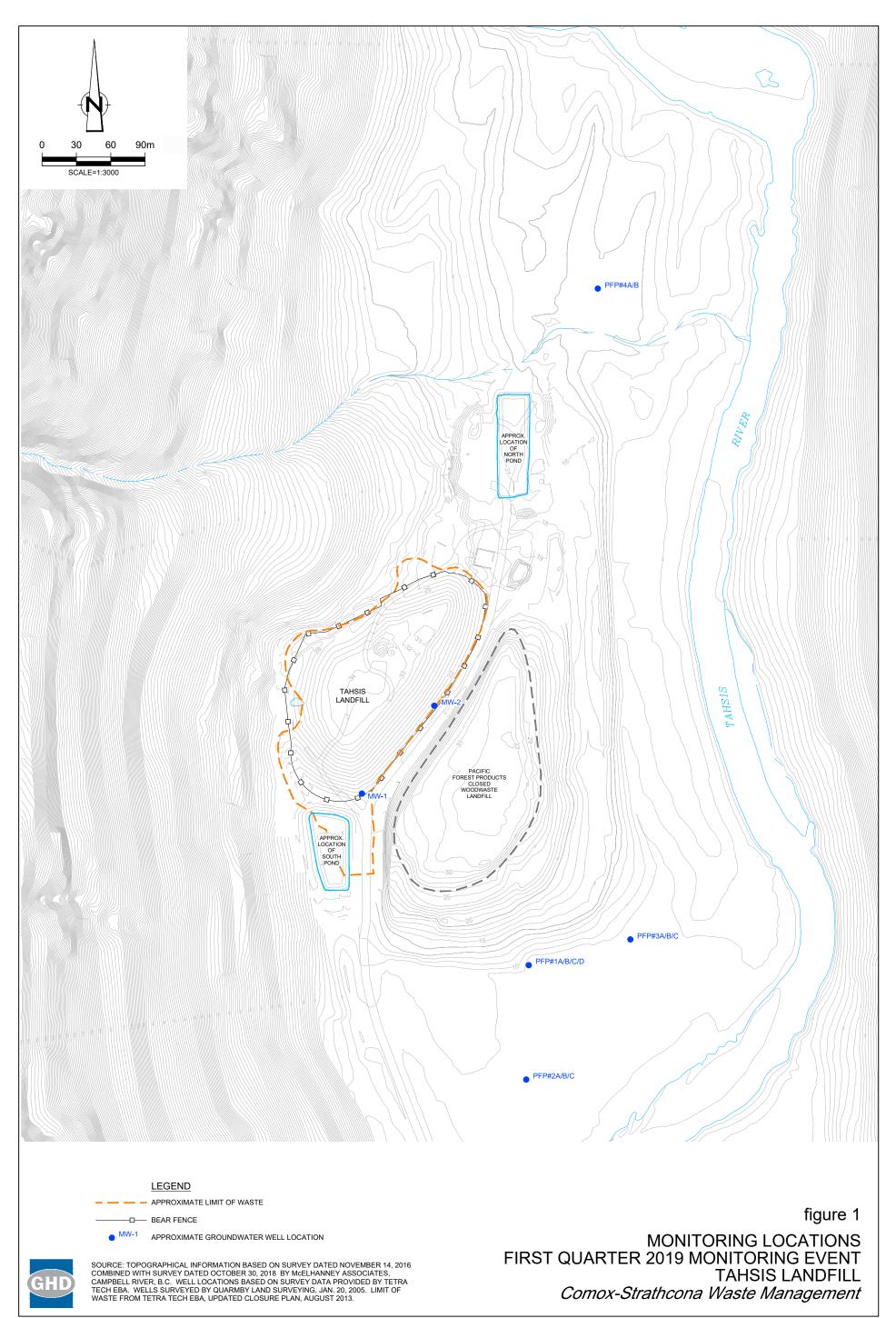
(5) Construction cost inflation rate applied to forecast construction costs, calculated based on 10 year average annual increase in Vancouver non-residential building construction index (CANSIM Table 18-10-0135-01) (latest index Q4 2019).

(6) Discount rate calculated based on MFA 30 year borrowing rate as of December 31, 2019

Operations and maintenance inflation rate applied to operations and maintenance costs. Calculated based on the average of the annual (7) percent change of the Consumer price index for BC (averaged over 2010-2019 period) (CANSIM Table 18-10-0004-01)

# Appendix E Environmental Monitoring Specifications

## **Environmental Monitoring Program Specification – 2019**


| PROJECT:             | Comox Strathcona Was<br>Tahsis Waste Managem |                         |
|----------------------|----------------------------------------------|-------------------------|
| PROJECT NO.:         | 056484-54                                    |                         |
| PROJECT MANAGER:     | Greg Ferraro                                 |                         |
| PROJECT COORDINATOR: | Michaela Dyck                                |                         |
| MONITORING STAFF:    |                                              | RESPONSIBILITY          |
|                      | Natasha Turl<br>Chris Thorne                 | Field Technician(s)     |
|                      | Airesse MacPhee                              | QA/QC Chemist           |
|                      | Laurie Clark                                 | Database Manager        |
| LABORATORIES USED:   | ALS Environmental, Bur                       | rnaby, British Columbia |
| AUTHORIZATION:       | IONITORING EVENT(S)                          | PC/PM SIGNATURE         |
|                      | April, October                               |                         |

| Revision # | Date     | Revision                                                                                                                                        | GHD |
|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1          | Apr 2014 | Monitoring Specification creation.                                                                                                              | MND |
| 2          | Jun 2014 | Added phosphorus to the metals scan.                                                                                                            | MND |
| 3          | Feb 2016 | Updated field and database staffing, added WG matrix to field blank.                                                                            | TE  |
| 4          | Aug 2016 | Updated project staffing.                                                                                                                       | MND |
| 5          | May 2017 | Updated Site access information.                                                                                                                | MND |
| 6          | Jan 2018 | Updated project staffing.                                                                                                                       | NT  |
| 7          | Apr 2018 | Updated tips section and project staffing.                                                                                                      | NT  |
| 8          | Apr 2019 | Included monitoring wells PFP#1A, PFP#2A, PFP#3A, and<br>PFP#4A to the sample collection and removed the<br>corresponding "B" monitoring wells. | NT  |

### WATER QUALITY MONITORING

| Monitoring Locations:  | Figure 1 and Table 1 |
|------------------------|----------------------|
| Monitoring Frequency:  | Table 1              |
| Monitoring Parameters: | Table 2              |

Contact Public Works (currently Greg) that we will be on-site (250-934-6337). Public Works will open the gate for us. Public Works has a copy of the GHD well keys. Landfill open on Wednesdays, or can go to the Village Office (250-934-6344) for the key.



56484-55(MEMO109)GN-WA001. MAY 31, 2019

### Table 1

### Sampling Schedule Environmental Monitoring Program Specification - 2019

|                        |                                   |                  | Semi-                   | annual     |            |
|------------------------|-----------------------------------|------------------|-------------------------|------------|------------|
| Monitoring<br>Location | Monitoring Location Purpose       | Sample<br>Matrix | Hydraulic<br>Monitoring | April      | October    |
| Groundwater M          | Monitoring Program (14 locations) |                  |                         |            | 1          |
| MW-1                   | Southern toe of the landfill.     | WG               | $\checkmark$            | Schedule A | Schedule A |
| MW-2                   | Northeast portion of the lanfill. | WG               | $\checkmark$            | Schedule A | Schedule A |
| PFP#1(A)               | Downgradient.                     | WG               | $\checkmark$            | Schedule A | Schedule A |
| PFP#1(B)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#1(C)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#1(D)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#2(A)               | Downgradient.                     | WG               | $\checkmark$            | Schedule A | Schedule A |
| PFP#2(B)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#2(C)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#3(A)               | Downgradient.                     | WG               | $\checkmark$            | Schedule A | Schedule A |
| PFP#3(B)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#3(C)               | Downgradient.                     | WG               | $\checkmark$            | -          | -          |
| PFP#4(A)               | Background.                       | WG               | $\checkmark$            | Schedule A | Schedule A |
| PFP#4(B)               | Background.                       | WG               | $\checkmark$            | -          | -          |
| Field Quality A        | ssurance/Quality Control          |                  |                         |            |            |
| Field Blank            |                                   | WG               | -                       | Schedule A | -          |
| Groundwater D          | uplicate                          | WG               | -                       | Schedule A | -          |

Notes:

WG - Groundwater  $\sqrt{}$  - Every monitoring event

## Table 2

## Analytical Parameters Environmental Monitoring Program Specification - 2019

|                                                                                                          | Groundwater  |
|----------------------------------------------------------------------------------------------------------|--------------|
| Schedule A                                                                                               |              |
| Hydraulic Monitoring                                                                                     | 1            |
| Water level<br>Depth to bottom of well                                                                   | $\sqrt{1}$   |
| Field Parameters                                                                                         |              |
| Dissolved Oxygen<br>Oxidation-Reduction Potential (ORP)<br>pH<br>Conductivity (uS/cm)                    |              |
| Temperature<br>Total Dissolved Solids (TDS)<br>Turbidity                                                 |              |
| General Chemistry                                                                                        |              |
| Alkalinity (Speciated)<br>Chloride (Dissolved)<br>Flouride<br>pH<br>Conductivity<br>Sulphate (Dissolved) |              |
| Nutrients                                                                                                | 1            |
| Ammonia-N<br>Nitrate (as N)<br>Nitrite (as N)<br>Nitrate/Nitrite                                         |              |
| Metals [incl. hardness, mercury]                                                                         | 1            |
| Dissolved Metals                                                                                         | $\checkmark$ |

# Appendix F Field Sample Keys and Laboratory Reports



#### GHD Field Sample Key (FSK)

| Site                  | Tahsis La   | andfill (056484-5          | i4)                    |             |               |                   |                                    |                                |            |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |                 |
|-----------------------|-------------|----------------------------|------------------------|-------------|---------------|-------------------|------------------------------------|--------------------------------|------------|-----------------------|-------------------|-----------------|----------|----------------|--------------|--------------------|-----------|-----------------|------------------|---------------------------|---------------------------|-----------------|
| Sample Reason         | Spri        | ing 2019 EMP               |                        | -           |               |                   |                                    |                                |            |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |                 |
| Sampler Name          | M. Dy       | /ck & D. Botero            |                        | _           |               |                   |                                    |                                |            |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |                 |
| Sampling Company      |             | GHD Ltd.                   |                        | _           |               | SSOW Refe         | rence Code :                       | _                              | _          |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |                 |
| Laboratory(s)         | ALS F       | Environmental              |                        | _           |               |                   |                                    |                                |            | Tempe                 | erature           | рН              | Eh /     | ORP            | Condu        | uctivity           | Turt      | oidity          | I                | 00                        | Т                         | DS              |
| Sample ID             | Location    | Sample Date<br>(mm/dd/yyy) | Sample Time<br>(hh:mm) | Sample Type | Sample Matrix | Grab or Composite | Parent Sample ID<br>for Field Dups | Footnote(s)<br>Volume of Water | Purged (L) | Sample<br>Temperature | Temperature Units | Field pH (s.u.) | Eh / ORP | Eh / ORP Units | Conductivity | Conductivity Units | Turbidity | Turbidity Units | Dissolved Oxygen | Dissolved Oxygen<br>Units | Total Dissolved<br>Solids | Total Dissolved |
| WG-56484-080519-DB-01 | PFP#4A      | 5/8/2019                   | 9:45                   | Ν           | WG            | grab              |                                    |                                | 8          | 7.22                  | С                 | 6.94            | 234      | mV             | 152          | uS/cm              | 58        | ntu             | -                | mg/L                      | 0.099                     |                 |
| WG-56484-080519-DB-02 | PFP#3A      | 5/8/2019                   | 10:20                  | Ν           | WG            | grab              |                                    |                                | 21         | 7.52                  | С                 | 6.91            | 261      | mV             | 184          | uS/cm              | 10.7      | ntu             | -                | mg/L                      | 0.12                      | ç               |
| WG-56484-080519-DB-03 | PFP#1A      | 5/8/2019                   | 10:50                  | Ν           | WG            | grab              |                                    |                                | 24         | 10.42                 | С                 | 6.93            | 252      | mV             | 684          | uS/cm              | 180       | ntu             | -                | mg/L                      | 0.437                     | ç               |
| WG-56484-080519-DB-04 | PFP#2A      | 5/8/2019                   | 11:20                  | Ν           | WG            | grab              |                                    |                                | 28         | 8.87                  | С                 | 7.25            | 253      | mV             | 426          | uS/cm              | 37        | ntu             | -                | mg/L                      | 0.277                     | ç               |
| WG-56484-080519-DB-05 | MW-2        | 5/8/2019                   | 11:55                  | Ν           | WG            | grab              |                                    |                                | 39         | 7.98                  | С                 | 8.08            | 229      | mV             | 176          | uS/cm              | 0.0       | ntu             | -                | mg/L                      | 0.114                     | ç               |
| WG-56484-080519-DB-06 | MW-1        | 5/8/2019                   | 12:30                  | N           | WG            | grab              |                                    |                                | 36         | 9.59                  | С                 | 7.82            | 235      | mV             | 307          | uS/cm              | 0.3       | ntu             | -                | mg/L                      | 0.199                     | ç               |
| WG-56484-080519-DB-07 | Field Blank | 5/8/2019                   | 12:45                  | FB          | WG            | grab              |                                    |                                | -          | -                     | С                 | _               | -        | mV             | -            | uS/cm              | -         | ntu             | -                | mg/L                      | -                         | ç               |





GHD Limited ATTN: Airesse MacPhee # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Date Received:10-MAY-19Report Date:30-MAY-19 18:33 (MT)Version:FINAL

Client Phone: 613-727-0510

# **Certificate of Analysis**

#### Lab Work Order #: L2271564

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 73515713 056484-55

Tahsis (Phase 05) GW

Selam Worku Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

L2271564 CONTD.... PAGE 2 of 14 Version: FINAL

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                            | Result           | Qualifier* | D.L.           | Units        | Extracted | Analyzed    | Batch                |
|------------------------------------------------------------------------------------------------------|------------------|------------|----------------|--------------|-----------|-------------|----------------------|
| L2271564-1 WG-56484-080519-DB-01<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 09:4<br>Matrix: WG | 5                |            |                |              |           |             |                      |
| Physical Tests                                                                                       |                  |            |                |              |           |             |                      |
| Conductivity                                                                                         | 162              |            | 2.0            | uS/cm        |           | 15-MAY-19   | R4636061             |
| Hardness (as CaCO3)                                                                                  | 79.2             |            | 0.50           | mg/L         |           | 21-MAY-19   |                      |
| рН                                                                                                   | 8.13             |            | 0.10           | рН           |           | 15-MAY-19   | R4636061             |
| Anions and Nutrients                                                                                 |                  |            |                |              |           |             |                      |
| Alkalinity, Bicarbonate (as CaCO3)                                                                   | 77.5             |            | 1.0            | mg/L         |           |             | R4636061             |
| Alkalinity, Carbonate (as CaCO3)                                                                     | <1.0             |            | 1.0            | mg/L         |           |             | R4636061             |
| Alkalinity, Hydroxide (as CaCO3)                                                                     | <1.0             |            | 1.0            | mg/L         |           |             | R4636061             |
| Alkalinity, Total (as CaCO3)                                                                         | 77.5             |            | 1.0            | mg/L         |           |             | R4636061             |
| Ammonia, Total (as N)                                                                                | 0.0073           |            | 0.0050         | mg/L         |           |             | R4631453             |
| Chloride (Cl)                                                                                        | 1.72             |            | 0.50           | mg/L         |           |             | R4635753             |
| Fluoride (F)                                                                                         | <0.020           |            | 0.020          | mg/L         |           |             | R4635753             |
| Nitrate (as N)                                                                                       | 0.120<br><0.0010 |            | 0.0050         | mg/L         |           |             | R4635753<br>R4635753 |
| Nitrite (as N)<br>Sulfate (SO4)                                                                      |                  |            | 0.0010<br>0.30 | mg/L<br>mg/L |           |             | R4635753             |
| Dissolved Metals                                                                                     | 1.69             |            | 0.30           | mg/∟         |           | 11-IVIA1-19 | K4030753             |
| Dissolved Mercury Filtration Location                                                                | LAB              |            |                |              |           | 29-MAY-19   | R4649166             |
| Dissolved Metals Filtration Location                                                                 | LAB              |            |                |              |           |             | R4639879             |
| Aluminum (AI)-Dissolved                                                                              | 0.0124           |            | 0.0010         | mg/L         | 21-MAY-19 |             | R4639780             |
| Antimony (Sb)-Dissolved                                                                              | <0.00010         |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Arsenic (As)-Dissolved                                                                               | <0.00010         |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Barium (Ba)-Dissolved                                                                                | 0.00052          |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Beryllium (Be)-Dissolved                                                                             | <0.00010         |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Bismuth (Bi)-Dissolved                                                                               | <0.000050        |            | 0.000050       | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Boron (B)-Dissolved                                                                                  | <0.010           |            | 0.010          | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Cadmium (Cd)-Dissolved                                                                               | <0.0000050       |            | 0.0000050      | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Calcium (Ca)-Dissolved                                                                               | 27.8             |            | 0.050          | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Cesium (Cs)-Dissolved                                                                                | <0.000010        |            | 0.000010       | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Chromium (Cr)-Dissolved                                                                              | <0.00010         |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Cobalt (Co)-Dissolved                                                                                | <0.00010         |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Copper (Cu)-Dissolved                                                                                | <0.00020         |            | 0.00020        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Iron (Fe)-Dissolved                                                                                  | <0.010           |            | 0.010          | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Lead (Pb)-Dissolved                                                                                  | <0.000050        |            | 0.000050       | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Lithium (Li)-Dissolved                                                                               | <0.0010          |            | 0.0010         | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Magnesium (Mg)-Dissolved                                                                             | 2.37             |            | 0.0050         | mg/L         | 21-MAY-19 |             | R4639780             |
| Manganese (Mn)-Dissolved                                                                             | 0.00032          |            | 0.00010        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Mercury (Hg)-Dissolved                                                                               | 0.0000100        | WSMB       | 0.0000050      | mg/L         | 29-MAY-19 | 29-MAY-19   | R4647372             |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000105         |            | 0.000050       | mg/L         | 21-MAY-19 |             | R4639780             |
| Nickel (Ni)-Dissolved                                                                                | <0.00050         |            | 0.00050        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |
| Phosphorus (P)-Dissolved                                                                             | <0.050           |            | 0.050          | mg/L         | 21-MAY-19 |             | R4639780             |
| Potassium (K)-Dissolved                                                                              | <0.050           |            | 0.050          | mg/L         | 21-MAY-19 |             | R4639780             |
| Rubidium (Rb)-Dissolved                                                                              | <0.00020         | 1          | 0.00020        | mg/L         | 21-MAY-19 | 21-MAY-19   | R4639780             |

| Sample Details/Parameters                                                                                                   | Result    | Qualifier* D.L. | Units | Extracted | Analyzed    | Batch    |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-------|-----------|-------------|----------|
| L2271564-1 WG-56484-080519-DB-0<br>Sampled By: M. Dyck/ D. Botero on 08<br>Matrix: WG                                       |           |                 |       |           |             |          |
| Dissolved Metals                                                                                                            |           |                 |       |           |             |          |
| Selenium (Se)-Dissolved                                                                                                     | 0.000058  | 0.000050        | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Silicon (Si)-Dissolved                                                                                                      | 0.827     | 0.050           | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Silver (Ag)-Dissolved                                                                                                       | <0.000010 | 0.000010        | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Sodium (Na)-Dissolved                                                                                                       | 0.838     | 0.050           | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Strontium (Sr)-Dissolved                                                                                                    | 0.0409    | 0.00020         | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Sulfur (S)-Dissolved                                                                                                        | <0.50     | 0.50            | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Tellurium (Te)-Dissolved                                                                                                    | <0.00020  | 0.00020         | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Thallium (TI)-Dissolved                                                                                                     | <0.000010 | 0.000010        | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Thorium (Th)-Dissolved                                                                                                      | <0.00010  | 0.00010         | mg/L  | 21-MAY-19 | 21-MAY-19   | R4639780 |
| Tin (Sn)-Dissolved                                                                                                          | <0.00010  | 0.00010         | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Titanium (Ti)-Dissolved                                                                                                     | <0.00030  | 0.00030         | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Tungsten (W)-Dissolved                                                                                                      | <0.00010  | 0.00010         | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Uranium (U)-Dissolved                                                                                                       | 0.000144  | 0.000010        | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Vanadium (V)-Dissolved                                                                                                      | <0.00050  | 0.00050         | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Zinc (Zn)-Dissolved                                                                                                         | <0.0010   | 0.0010          | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| Zirconium (Zr)-Dissolved                                                                                                    | <0.000060 | 0.000060        | mg/L  | 21-MAY-19 | 21-MAY-19   | R463978  |
| .2271564-2         WG-56484-080519-DB-0           Sampled By:         M. Dyck/ D. Botero on 08           Matrix:         WG |           |                 |       |           |             |          |
| Physical Tests                                                                                                              | 400       |                 | 0/200 |           | 45 14474 40 | D 400000 |
| Conductivity                                                                                                                | 198       | 2.0             | uS/cm |           |             | R463606  |
| Hardness (as CaCO3)                                                                                                         | 86.3      | 0.50            | mg/L  |           | 14-MAY-19   | D 400000 |
| pH<br>Anions and Nutrients                                                                                                  | 8.29      | 0.10            | pН    |           | 15-MAY-19   | R463606  |
| Alkalinity, Bicarbonate (as CaCO3)                                                                                          | 99.4      | 1.0             | mg/L  |           | 15-MAY-19   | R463606  |
| Alkalinity, Carbonate (as CaCO3)                                                                                            | <1.0      | 1.0             | mg/L  |           | 15-MAY-19   | R463606  |
| Alkalinity, Hydroxide (as CaCO3)                                                                                            | <1.0      | 1.0             | mg/L  |           | 15-MAY-19   |          |
| Alkalinity, Total (as CaCO3)                                                                                                | 99.4      | 1.0             | mg/L  |           | 15-MAY-19   |          |
| Ammonia, Total (as N)                                                                                                       | <0.0050   | 0.0050          | mg/L  |           | 12-MAY-19   | R463145  |
| Chloride (Cl)                                                                                                               | 1.63      | 0.50            | mg/L  |           | 11-MAY-19   |          |
| Fluoride (F)                                                                                                                | <0.020    | 0.020           | mg/L  |           | 11-MAY-19   |          |
| Nitrate (as N)                                                                                                              | 0.0837    | 0.0050          | mg/L  |           | 11-MAY-19   |          |
| Nitrite (as N)                                                                                                              | <0.0010   | 0.0010          | mg/L  |           |             | R463575  |
| Sulfate (SO4)                                                                                                               | 1.83      | 0.30            | mg/L  |           | 11-MAY-19   |          |
| Dissolved Metals                                                                                                            |           |                 | Ŭ     |           |             |          |
| Dissolved Mercury Filtration Location                                                                                       | FIELD     |                 |       |           | 11-MAY-19   | R463117  |
| Dissolved Metals Filtration Location                                                                                        | FIELD     |                 |       |           | 13-MAY-19   | R463308  |
| Aluminum (Al)-Dissolved                                                                                                     | 0.0044    | 0.0010          | mg/L  | 13-MAY-19 | 14-MAY-19   | R463445  |
| Antimony (Sb)-Dissolved                                                                                                     | <0.00010  | 0.00010         | mg/L  | 13-MAY-19 | 14-MAY-19   | R463445  |
| Arsenic (As)-Dissolved                                                                                                      | <0.00010  | 0.00010         | mg/L  | 13-MAY-19 | 14-MAY-19   | R463445  |
|                                                                                                                             |           |                 | 1     | 1         | I           | 1        |
| Barium (Ba)-Dissolved                                                                                                       | 0.00093   | 0.00010         | mg/L  | 13-MAY-19 | 14-MAY-19   | R463445  |

| Sample Details/Parameters                                                                            | Result    | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-------|-----------|-----------|----------|
| L2271564-2 WG-56484-080519-DB-02<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 10:2<br>Matrix: WG | 0         |            |           |       |           |           |          |
| Dissolved Metals                                                                                     |           |            |           |       |           |           |          |
| Bismuth (Bi)-Dissolved                                                                               | <0.000050 |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Boron (B)-Dissolved                                                                                  | <0.010    |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Cadmium (Cd)-Dissolved                                                                               | <0.000050 |            | 0.0000050 | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Calcium (Ca)-Dissolved                                                                               | 31.2      |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Cesium (Cs)-Dissolved                                                                                | <0.000010 |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Chromium (Cr)-Dissolved                                                                              | 0.00022   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Cobalt (Co)-Dissolved                                                                                | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Copper (Cu)-Dissolved                                                                                | <0.00020  |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Iron (Fe)-Dissolved                                                                                  | <0.010    |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Lead (Pb)-Dissolved                                                                                  | <0.000050 |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Lithium (Li)-Dissolved                                                                               | <0.0010   |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Magnesium (Mg)-Dissolved                                                                             | 2.02      |            | 0.0050    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Manganese (Mn)-Dissolved                                                                             | 0.00013   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Mercury (Hg)-Dissolved                                                                               | <0.000050 |            | 0.0000050 | mg/L  | 11-MAY-19 | 13-MAY-19 | R4632265 |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000125  |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Nickel (Ni)-Dissolved                                                                                | <0.00050  |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Phosphorus (P)-Dissolved                                                                             | <0.050    |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Potassium (K)-Dissolved                                                                              | 0.118     |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Rubidium (Rb)-Dissolved                                                                              | <0.00020  |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Selenium (Se)-Dissolved                                                                              | 0.000080  |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Silicon (Si)-Dissolved                                                                               | 1.10      |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Silver (Ag)-Dissolved                                                                                | <0.000010 |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Sodium (Na)-Dissolved                                                                                | 0.820     |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Strontium (Sr)-Dissolved                                                                             | 0.0381    |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Sulfur (S)-Dissolved                                                                                 | 0.70      |            | 0.50      | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tellurium (Te)-Dissolved                                                                             | <0.00020  |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thallium (TI)-Dissolved                                                                              | <0.000010 |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thorium (Th)-Dissolved                                                                               | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tin (Sn)-Dissolved                                                                                   | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 |           | R4634451 |
| Titanium (Ti)-Dissolved                                                                              | <0.00030  |            | 0.00030   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tungsten (W)-Dissolved                                                                               | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 |           | R4634451 |
| Uranium (U)-Dissolved                                                                                | 0.000184  |            | 0.000010  | mg/L  | 13-MAY-19 |           | R4634451 |
| Vanadium (V)-Dissolved                                                                               | <0.00050  |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zinc (Zn)-Dissolved                                                                                  | <0.0010   |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zirconium (Zr)-Dissolved                                                                             | <0.000060 |            | 0.000060  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| L2271564-3 WG-56484-080519-DB-03<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 10:5<br>Matrix: WG | 0         |            |           |       |           |           |          |
| Physical Tests                                                                                       |           |            |           |       |           |           |          |
| Conductivity                                                                                         | 527       |            | 2.0       | uS/cm |           | 15-MAY-19 | R4636061 |
| Hardness (as CaCO3)                                                                                  | 349       |            | 0.50      | mg/L  |           | 14-MAY-19 |          |
| рН                                                                                                   | 7.74      |            | 0.10      | pН    |           | 15-MAY-19 | R4636061 |

L2271564 CONTD.... PAGE 5 of 14 Version: FINAL

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                            | Result     | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------------------------|------------|------------|-----------|-------|-----------|-----------|----------|
| L2271564-3 WG-56484-080519-DB-03<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 10:5<br>Matrix: WG | 0          |            |           |       |           |           |          |
| Physical Tests<br>Anions and Nutrients                                                               |            |            |           |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                                   | 288        |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Carbonate (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Hydroxide (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Total (as CaCO3)                                                                         | 288        |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Ammonia, Total (as N)                                                                                | <0.0050    |            | 0.0050    | mg/L  |           | 12-MAY-19 | R4631453 |
| Chloride (Cl)                                                                                        | 2.03       |            | 0.50      | mg/L  |           | 11-MAY-19 | R4635753 |
| Fluoride (F)                                                                                         | <0.020     |            | 0.020     | mg/L  |           | 11-MAY-19 | R4635753 |
| Nitrate (as N)                                                                                       | 0.129      |            | 0.0050    | mg/L  |           | 11-MAY-19 | R4635753 |
| Nitrite (as N)                                                                                       | <0.0010    |            | 0.0010    | mg/L  |           | 11-MAY-19 | R4635753 |
| Sulfate (SO4)                                                                                        | 1.92       |            | 0.30      | mg/L  |           | 11-MAY-19 | R4635753 |
| Dissolved Metals                                                                                     |            |            |           |       |           |           |          |
| Dissolved Mercury Filtration Location                                                                | FIELD      |            |           |       |           |           | R4631173 |
| Dissolved Metals Filtration Location                                                                 | FIELD      |            |           |       |           |           | R4633086 |
| Aluminum (AI)-Dissolved                                                                              | <0.0010    |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Antimony (Sb)-Dissolved                                                                              | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Arsenic (As)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 |           | R4634451 |
| Barium (Ba)-Dissolved                                                                                | 0.00591    |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Beryllium (Be)-Dissolved                                                                             | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Bismuth (Bi)-Dissolved                                                                               | <0.000050  |            | 0.000050  | mg/L  | 13-MAY-19 |           | R4634451 |
| Boron (B)-Dissolved                                                                                  | 0.018      |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Cadmium (Cd)-Dissolved                                                                               | 0.000087   |            | 0.0000050 | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Calcium (Ca)-Dissolved                                                                               | 126        |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Cesium (Cs)-Dissolved                                                                                | <0.000010  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Chromium (Cr)-Dissolved                                                                              | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Cobalt (Co)-Dissolved                                                                                | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Copper (Cu)-Dissolved                                                                                | 0.00061    |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Iron (Fe)-Dissolved                                                                                  | <0.010     |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Lead (Pb)-Dissolved                                                                                  | <0.000050  |            | 0.000050  | mg/L  | 13-MAY-19 |           | R4634451 |
| Lithium (Li)-Dissolved                                                                               | <0.0010    |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Magnesium (Mg)-Dissolved                                                                             | 8.49       |            | 0.0050    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Manganese (Mn)-Dissolved                                                                             | 0.00199    |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Mercury (Hg)-Dissolved                                                                               | <0.0000050 |            | 0.0000050 | mg/L  | 11-MAY-19 | 13-MAY-19 | R4632265 |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000055   |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Nickel (Ni)-Dissolved                                                                                | <0.00050   |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Phosphorus (P)-Dissolved                                                                             | < 0.050    |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Potassium (K)-Dissolved                                                                              | 0.946      |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Rubidium (Rb)-Dissolved                                                                              | 0.00038    |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Selenium (Se)-Dissolved                                                                              | 0.000054   |            | 0.000050  | mg/L  | 13-MAY-19 |           | R4634451 |
| Silicon (Si)-Dissolved                                                                               | 2.21       |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Silver (Ag)-Dissolved                                                                                | <0.000010  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |

| Sample Details/Parameters                                                                            | Result     | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------------------------|------------|------------|-----------|-------|-----------|-----------|----------|
| L2271564-3 WG-56484-080519-DB-03<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 10:5<br>Matrix: WG | 50         |            |           |       |           |           |          |
| Dissolved Metals                                                                                     |            |            |           |       |           |           |          |
| Sodium (Na)-Dissolved                                                                                | 2.23       |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Strontium (Sr)-Dissolved                                                                             | 0.154      |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Sulfur (S)-Dissolved                                                                                 | 0.84       |            | 0.50      | mg/L  | 13-MAY-19 |           | R4634451 |
| Tellurium (Te)-Dissolved                                                                             | <0.00020   |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thallium (TI)-Dissolved                                                                              | <0.000010  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thorium (Th)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tin (Sn)-Dissolved                                                                                   | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Titanium (Ti)-Dissolved                                                                              | <0.00030   |            | 0.00030   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tungsten (W)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Uranium (U)-Dissolved                                                                                | 0.000374   |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Vanadium (V)-Dissolved                                                                               | <0.00050   |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zinc (Zn)-Dissolved                                                                                  | <0.0010    |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zirconium (Zr)-Dissolved                                                                             | <0.000060  |            | 0.000060  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| L2271564-4 WG-56484-080519-DB-04<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 11:2<br>Matrix: WG | 20         |            |           |       |           |           |          |
| Physical Tests                                                                                       |            |            |           |       |           |           |          |
| Conductivity                                                                                         | 396        |            | 2.0       | uS/cm |           | 15-MAY-19 | R4636061 |
| Hardness (as CaCO3)                                                                                  | 223        |            | 0.50      | mg/L  |           | 14-MAY-19 |          |
| рН                                                                                                   | 8.26       |            | 0.10      | рН    |           | 15-MAY-19 | R4636061 |
| Anions and Nutrients                                                                                 |            |            |           |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                                   | 233        |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Carbonate (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Hydroxide (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Total (as CaCO3)                                                                         | 233        |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Ammonia, Total (as N)                                                                                | <0.0050    |            | 0.0050    | mg/L  |           | 12-MAY-19 | R4631453 |
| Chloride (Cl)                                                                                        | 1.77       |            | 0.50      | mg/L  |           | 11-MAY-19 | R4635753 |
| Fluoride (F)                                                                                         | <0.020     |            | 0.020     | mg/L  |           | 11-MAY-19 | R4635753 |
| Nitrate (as N)                                                                                       | 0.175      |            | 0.0050    | mg/L  |           | 11-MAY-19 | R4635753 |
| Nitrite (as N)                                                                                       | <0.0010    |            | 0.0010    | mg/L  |           |           | R4635753 |
| Sulfate (SO4)                                                                                        | 1.46       |            | 0.30      | mg/L  |           | 11-MAY-19 | R4635753 |
| Dissolved Metals                                                                                     |            |            |           |       |           |           |          |
| Dissolved Mercury Filtration Location                                                                | FIELD      |            |           |       |           |           | R4631173 |
| Dissolved Metals Filtration Location                                                                 | FIELD      |            |           |       |           | 13-MAY-19 | R4633086 |
| Aluminum (Al)-Dissolved                                                                              | 0.0015     |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Antimony (Sb)-Dissolved                                                                              | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Arsenic (As)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 |           | R4634451 |
| Barium (Ba)-Dissolved                                                                                | 0.00278    |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Beryllium (Be)-Dissolved                                                                             | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Bismuth (Bi)-Dissolved                                                                               | <0.000050  |            | 0.000050  | mg/L  | 13-MAY-19 |           | R4634451 |
| Boron (B)-Dissolved                                                                                  | 0.011      |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 |          |
| Cadmium (Cd)-Dissolved                                                                               | <0.0000050 |            | 0.0000050 | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |

| Sample Details/Parameters                                                                            | Result               | Qualifier* | D.L.               | Units        | Extracted              | Analyzed               | Batch                |
|------------------------------------------------------------------------------------------------------|----------------------|------------|--------------------|--------------|------------------------|------------------------|----------------------|
| L2271564-4 WG-56484-080519-DB-04<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 11:2<br>Matrix: WG | 0                    |            |                    |              |                        |                        |                      |
| Dissolved Metals                                                                                     |                      |            |                    |              |                        |                        |                      |
| Calcium (Ca)-Dissolved                                                                               | 80.0                 |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Cesium (Cs)-Dissolved                                                                                | 0.000015             |            | 0.000010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Chromium (Cr)-Dissolved                                                                              | 0.00025              |            | 0.00010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Cobalt (Co)-Dissolved                                                                                | <0.00010             |            | 0.00010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Copper (Cu)-Dissolved                                                                                | 0.00023              |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Iron (Fe)-Dissolved                                                                                  | <0.010               |            | 0.010              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Lead (Pb)-Dissolved                                                                                  | <0.000050            |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Lithium (Li)-Dissolved                                                                               | <0.0010              |            | 0.0010             | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Magnesium (Mg)-Dissolved                                                                             | 5.65                 |            | 0.0050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Manganese (Mn)-Dissolved                                                                             | <0.00010             |            | 0.00010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Mercury (Hg)-Dissolved                                                                               | <0.000050            |            | 0.0000050          | mg/L         | 11-MAY-19              | 13-MAY-19              | R4632265             |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000071             |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Nickel (Ni)-Dissolved                                                                                | <0.00050             |            | 0.00050            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Phosphorus (P)-Dissolved                                                                             | <0.050               |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Potassium (K)-Dissolved                                                                              | 0.491                |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Rubidium (Rb)-Dissolved                                                                              | 0.00022              |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Selenium (Se)-Dissolved                                                                              | 0.000054             |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Silicon (Si)-Dissolved                                                                               | 2.27                 |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Silver (Ag)-Dissolved                                                                                | <0.000010            |            | 0.000010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Sodium (Na)-Dissolved                                                                                | 1.61                 |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Strontium (Sr)-Dissolved                                                                             | 0.0969               |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Sulfur (S)-Dissolved<br>Tellurium (Te)-Dissolved                                                     | 0.51                 |            | 0.50               | mg/L         | 13-MAY-19              | 14-MAY-19              |                      |
|                                                                                                      | <0.00020             |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Thallium (TI)-Dissolved                                                                              | <0.000010            |            | 0.000010           | mg/L         | 13-MAY-19<br>13-MAY-19 | 14-MAY-19<br>14-MAY-19 | R4634451<br>R4634451 |
| Thorium (Th)-Dissolved<br>Tin (Sn)-Dissolved                                                         | <0.00010<br><0.00010 |            | 0.00010<br>0.00010 | mg/L         | 13-MAY-19              | 14-MAY-19              |                      |
| Titanium (Ti)-Dissolved                                                                              | <0.00010             |            | 0.00030            | mg/L<br>mg/L | 13-MAY-19              | 14-MAY-19              |                      |
| Tungsten (W)-Dissolved                                                                               | <0.00010             |            | 0.00030            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Uranium (U)-Dissolved                                                                                | 0.000390             |            | 0.00010            | mg/L         | 13-MAY-19              |                        | R4634451             |
| Vanadium (V)-Dissolved                                                                               | < 0.00050            |            | 0.00050            | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Zinc (Zn)-Dissolved                                                                                  | <0.0010              |            | 0.0010             | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| Zirconium (Zr)-Dissolved                                                                             | <0.000060            |            | 0.000060           | mg/L         | 13-MAY-19              | 14-MAY-19              | R4634451             |
| L2271564-5 WG-56484-080519-DB-05<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 11:5<br>Matrix: WG |                      |            |                    | <u> </u>     |                        |                        |                      |
| Physical Tests                                                                                       |                      |            |                    |              |                        |                        |                      |
| Conductivity                                                                                         | 190                  |            | 2.0                | uS/cm        |                        | 15-MAY-19              | R4636061             |
| Hardness (as CaCO3)                                                                                  | 88.4                 |            | 0.50               | mg/L         |                        | 14-MAY-19              |                      |
| рН                                                                                                   | 8.28                 |            | 0.10               | pН           |                        | 15-MAY-19              | R4636061             |
| Anions and Nutrients                                                                                 |                      |            |                    |              |                        |                        |                      |
| Alkalinity, Bicarbonate (as CaCO3)                                                                   | 92.4                 |            | 1.0                | mg/L         |                        | 15-MAY-19              |                      |
| Alkalinity, Carbonate (as CaCO3)                                                                     | <1.0                 |            | 1.0                | mg/L         |                        | 15-MAY-19              | R4636061             |

L2271564 CONTD.... PAGE 8 of 14 Version: FINAL

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                            | Result              | Qualifier* | D.L.               | Units        | Extracted              | Analyzed               | Batch                                        |
|------------------------------------------------------------------------------------------------------|---------------------|------------|--------------------|--------------|------------------------|------------------------|----------------------------------------------|
| L2271564-5 WG-56484-080519-DB-05<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 11:5<br>Matrix: WG | 5                   |            |                    |              |                        |                        |                                              |
| Anions and Nutrients                                                                                 |                     |            |                    |              |                        |                        |                                              |
| Alkalinity, Hydroxide (as CaCO3)                                                                     | <1.0                |            | 1.0                | mg/L         |                        | 15-MAY-19              | R4636061                                     |
| Alkalinity, Total (as CaCO3)                                                                         | 92.4                |            | 1.0                | mg/L         |                        | 15-MAY-19              | R4636061                                     |
| Ammonia, Total (as N)                                                                                | <0.0050             |            | 0.0050             | mg/L         |                        | 12-MAY-19              | R4631453                                     |
| Chloride (Cl)                                                                                        | 1.87                |            | 0.50               | mg/L         |                        | 11-MAY-19              | R4635753                                     |
| Fluoride (F)                                                                                         | <0.020              |            | 0.020              | mg/L         |                        | 11-MAY-19              | R4635753                                     |
| Nitrate (as N)                                                                                       | 0.0900              |            | 0.0050             | mg/L         |                        | 11-MAY-19              | R4635753                                     |
| Nitrite (as N)                                                                                       | <0.0010             |            | 0.0010             | mg/L         |                        | 11-MAY-19              | R4635753                                     |
| Sulfate (SO4)                                                                                        | 2.51                |            | 0.30               | mg/L         |                        | 11-MAY-19              | R4635753                                     |
| Dissolved Metals                                                                                     |                     |            |                    |              |                        |                        |                                              |
| Dissolved Mercury Filtration Location                                                                | FIELD               |            |                    |              |                        | 11-MAY-19              | R4631173                                     |
| Dissolved Metals Filtration Location                                                                 | FIELD               |            | 0.0010             |              |                        |                        | R4633086                                     |
| Aluminum (Al)-Dissolved                                                                              | 0.0101              |            | 0.0010             | mg/L         | 13-MAY-19              | 14-MAY-19<br>14-MAY-19 | R463445 <sup>2</sup><br>R463445 <sup>2</sup> |
| Antimony (Sb)-Dissolved                                                                              | <0.00010            |            | 0.00010            | mg/L         | 13-MAY-19              |                        |                                              |
| Arsenic (As)-Dissolved<br>Barium (Ba)-Dissolved                                                      | <0.00010<br>0.00087 |            | 0.00010<br>0.00010 | mg/L<br>mg/L | 13-MAY-19<br>13-MAY-19 | 14-MAY-19<br>14-MAY-19 | R463445                                      |
| Beryllium (Be)-Dissolved                                                                             | <0.00087            |            | 0.00010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Bismuth (Bi)-Dissolved                                                                               | <0.00010            |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Boron (B)-Dissolved                                                                                  | <0.000000           |            | 0.000000           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Cadmium (Cd)-Dissolved                                                                               | <0.000050           |            | 0.0000050          | mg/L         | 13-MAY-19              |                        | R463445                                      |
| Calcium (Ca)-Dissolved                                                                               | 31.7                |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Cesium (Cs)-Dissolved                                                                                | <0.000010           |            | 0.000010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Chromium (Cr)-Dissolved                                                                              | 0.00013             |            | 0.00010            | mg/L         | 13-MAY-19              |                        | R463445                                      |
| Cobalt (Co)-Dissolved                                                                                | <0.00010            |            | 0.00010            | mg/L         | 13-MAY-19              |                        | R463445                                      |
| Copper (Cu)-Dissolved                                                                                | <0.00020            |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Iron (Fe)-Dissolved                                                                                  | <0.010              |            | 0.010              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Lead (Pb)-Dissolved                                                                                  | <0.000050           |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Lithium (Li)-Dissolved                                                                               | <0.0010             |            | 0.0010             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Magnesium (Mg)-Dissolved                                                                             | 2.22                |            | 0.0050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Manganese (Mn)-Dissolved                                                                             | <0.00010            |            | 0.00010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Mercury (Hg)-Dissolved                                                                               | <0.0000050          |            | 0.0000050          | mg/L         | 11-MAY-19              | 13-MAY-19              | R463226                                      |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000132            |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Nickel (Ni)-Dissolved                                                                                | <0.00050            |            | 0.00050            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Phosphorus (P)-Dissolved                                                                             | <0.050              |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Potassium (K)-Dissolved                                                                              | 0.099               |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Rubidium (Rb)-Dissolved                                                                              | <0.00020            |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Selenium (Se)-Dissolved                                                                              | 0.000076            |            | 0.000050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Silicon (Si)-Dissolved                                                                               | 0.755               |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Silver (Ag)-Dissolved                                                                                | <0.000010           |            | 0.000010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Sodium (Na)-Dissolved                                                                                | 0.985               |            | 0.050              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Strontium (Sr)-Dissolved                                                                             | 0.0468              |            | 0.00020            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |
| Sulfur (S)-Dissolved                                                                                 | 1.00                |            | 0.50               | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445                                      |

| Sample Details/Parameters                                                                             | Result    | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch                |
|-------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-------|-----------|-----------|----------------------|
| L2271564-5 WG-56484-080519-DB-05<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 11:55<br>Matrix: WG |           |            |           |       |           |           |                      |
| Dissolved Metals                                                                                      |           |            |           |       |           |           |                      |
| Tellurium (Te)-Dissolved                                                                              | <0.00020  |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Thallium (TI)-Dissolved                                                                               | <0.000010 |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Thorium (Th)-Dissolved                                                                                | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Tin (Sn)-Dissolved                                                                                    | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Titanium (Ti)-Dissolved                                                                               | <0.00030  |            | 0.00030   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Tungsten (W)-Dissolved                                                                                | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Uranium (U)-Dissolved                                                                                 | 0.000249  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Vanadium (V)-Dissolved                                                                                | <0.00050  |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Zinc (Zn)-Dissolved                                                                                   | <0.0010   |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| Zirconium (Zr)-Dissolved                                                                              | <0.000060 |            | 0.000060  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451             |
| L2271564-6 WG-56484-080519-DB-06<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 12:30<br>Matrix: WG |           |            |           |       |           |           |                      |
| Physical Tests                                                                                        |           |            |           |       |           |           |                      |
| Conductivity                                                                                          | 283       |            | 2.0       | uS/cm |           | 15-MAY-19 | R463606 <sup>2</sup> |
| Hardness (as CaCO3)                                                                                   | 156       |            | 0.50      | mg/L  |           | 14-MAY-19 |                      |
| рН                                                                                                    | 8.13      |            | 0.10      | рН    |           | 15-MAY-19 | R463606              |
| Anions and Nutrients                                                                                  |           |            |           |       |           |           |                      |
| Alkalinity, Bicarbonate (as CaCO3)                                                                    | 149       |            | 1.0       | mg/L  |           |           | R463606              |
| Alkalinity, Carbonate (as CaCO3)                                                                      | <1.0      |            | 1.0       | mg/L  |           | 15-MAY-19 | R463606              |
| Alkalinity, Hydroxide (as CaCO3)                                                                      | <1.0      |            | 1.0       | mg/L  |           | 15-MAY-19 |                      |
| Alkalinity, Total (as CaCO3)                                                                          | 149       |            | 1.0       | mg/L  |           | 15-MAY-19 | R463606              |
| Ammonia, Total (as N)                                                                                 | <0.0050   |            | 0.0050    | mg/L  |           | 12-MAY-19 | R463145              |
| Chloride (Cl)                                                                                         | 2.04      |            | 0.50      | mg/L  |           | 11-MAY-19 | R4635753             |
| Fluoride (F)                                                                                          | <0.020    |            | 0.020     | mg/L  |           | 11-MAY-19 | R463575              |
| Nitrate (as N)                                                                                        | 0.238     |            | 0.0050    | mg/L  |           | 11-MAY-19 | R463575              |
| Nitrite (as N)                                                                                        | <0.0010   |            | 0.0010    | mg/L  |           | 11-MAY-19 |                      |
| Sulfate (SO4)                                                                                         | 3.80      |            | 0.30      | mg/L  |           | 11-MAY-19 | R463575              |
| Dissolved Metals                                                                                      |           |            |           |       |           |           |                      |
| Dissolved Mercury Filtration Location                                                                 | FIELD     |            |           |       |           |           | R4631173             |
| Dissolved Metals Filtration Location                                                                  | FIELD     |            |           |       |           |           | R463308              |
| Aluminum (Al)-Dissolved                                                                               | 0.0035    |            | 0.0010    | mg/L  | 13-MAY-19 |           | R463445              |
| Antimony (Sb)-Dissolved                                                                               | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 |           | R463445              |
| Arsenic (As)-Dissolved                                                                                | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 |           | R463445              |
| Barium (Ba)-Dissolved                                                                                 | 0.00216   |            | 0.00010   | mg/L  | 13-MAY-19 |           | R463445              |
| Beryllium (Be)-Dissolved                                                                              | <0.00010  |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 |                      |
| Bismuth (Bi)-Dissolved                                                                                | <0.000050 |            | 0.000050  | mg/L  | 13-MAY-19 |           | R463445              |
| Boron (B)-Dissolved                                                                                   | 0.017     |            | 0.010     | mg/L  | 13-MAY-19 |           | R463445              |
| Cadmium (Cd)-Dissolved                                                                                | <0.000050 |            | 0.0000050 | mg/L  | 13-MAY-19 |           | R463445              |
| Calcium (Ca)-Dissolved                                                                                | 55.0      |            | 0.050     | mg/L  | 13-MAY-19 |           | R463445              |
| Cesium (Cs)-Dissolved                                                                                 | <0.000010 |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445 <sup>-</sup> |
| Chromium (Cr)-Dissolved                                                                               | 0.00019   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445              |

| Sample Details/Parameters                                                                            | Result     | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------------------------|------------|------------|-----------|-------|-----------|-----------|----------|
| L2271564-6 WG-56484-080519-DB-06<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 12:3<br>Matrix: WG | 30         |            |           |       |           |           |          |
| Dissolved Metals                                                                                     |            |            |           |       |           |           |          |
| Cobalt (Co)-Dissolved                                                                                | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Copper (Cu)-Dissolved                                                                                | 0.00028    |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Iron (Fe)-Dissolved                                                                                  | <0.010     |            | 0.010     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Lead (Pb)-Dissolved                                                                                  | <0.000050  |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Lithium (Li)-Dissolved                                                                               | <0.0010    |            | 0.0010    | mg/L  | 13-MAY-19 |           | R4634451 |
| Magnesium (Mg)-Dissolved                                                                             | 4.59       |            | 0.0050    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Manganese (Mn)-Dissolved                                                                             | 0.00047    |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Mercury (Hg)-Dissolved                                                                               | <0.0000050 |            | 0.0000050 | mg/L  | 11-MAY-19 | 13-MAY-19 | R4632265 |
| Molybdenum (Mo)-Dissolved                                                                            | 0.000073   |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Nickel (Ni)-Dissolved                                                                                | <0.00050   |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Phosphorus (P)-Dissolved                                                                             | <0.050     |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Potassium (K)-Dissolved                                                                              | 0.317      |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Rubidium (Rb)-Dissolved                                                                              | <0.00020   |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Selenium (Se)-Dissolved                                                                              | 0.000067   |            | 0.000050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Silicon (Si)-Dissolved                                                                               | 1.13       |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Silver (Ag)-Dissolved                                                                                | <0.000010  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Sodium (Na)-Dissolved                                                                                | 1.35       |            | 0.050     | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Strontium (Sr)-Dissolved                                                                             | 0.0694     |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Sulfur (S)-Dissolved                                                                                 | 1.28       |            | 0.50      | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tellurium (Te)-Dissolved                                                                             | <0.00020   |            | 0.00020   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thallium (TI)-Dissolved                                                                              | <0.000010  |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Thorium (Th)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tin (Sn)-Dissolved                                                                                   | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Titanium (Ti)-Dissolved                                                                              | <0.00030   |            | 0.00030   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Tungsten (W)-Dissolved                                                                               | <0.00010   |            | 0.00010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Uranium (U)-Dissolved                                                                                | 0.000181   |            | 0.000010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Vanadium (V)-Dissolved                                                                               | <0.00050   |            | 0.00050   | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zinc (Zn)-Dissolved                                                                                  | <0.0010    |            | 0.0010    | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| Zirconium (Zr)-Dissolved                                                                             | <0.000060  |            | 0.000060  | mg/L  | 13-MAY-19 | 14-MAY-19 | R4634451 |
| L2271564-7 WG-56484-080519-DB-07<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 12:4<br>Matrix: WG | 15         |            |           |       |           |           |          |
| Physical Tests                                                                                       |            |            |           |       |           |           |          |
| Conductivity                                                                                         | <2.0       |            | 2.0       | uS/cm |           | 15-MAY-19 | R4636061 |
| Hardness (as CaCO3)                                                                                  | <0.50      |            | 0.50      | mg/L  |           | 14-MAY-19 |          |
| рН                                                                                                   | 5.57       |            | 0.10      | рН    |           | 15-MAY-19 | R4636061 |
| Anions and Nutrients                                                                                 |            |            |           |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                                   | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Carbonate (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Hydroxide (as CaCO3)                                                                     | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Alkalinity, Total (as CaCO3)                                                                         | <1.0       |            | 1.0       | mg/L  |           | 15-MAY-19 | R4636061 |
| Ammonia, Total (as N)                                                                                | <0.0050    |            | 0.0050    | mg/L  |           | 12-MAY-19 | R4631453 |

L2271564 CONTD.... PAGE 11 of 14 Version: FINAL

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                            | Result              | Qualifier* | D.L.              | Units        | Extracted              | Analyzed               | Batch              |
|------------------------------------------------------------------------------------------------------|---------------------|------------|-------------------|--------------|------------------------|------------------------|--------------------|
| L2271564-7 WG-56484-080519-DB-07<br>Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 12:4<br>Matrix: WG | 5                   |            |                   |              |                        |                        |                    |
| Anions and Nutrients                                                                                 |                     |            |                   |              |                        |                        |                    |
| Chloride (Cl)                                                                                        | <0.50               |            | 0.50              | mg/L         |                        | 11-MAY-19              | R463575            |
| Fluoride (F)                                                                                         | <0.020              |            | 0.020             | mg/L         |                        | 11-MAY-19              | R463575            |
| Nitrate (as N)                                                                                       | <0.0050             |            | 0.0050            | mg/L         |                        | 11-MAY-19              | R463575            |
| Nitrite (as N)                                                                                       | <0.0010             |            | 0.0010            | mg/L         |                        | 11-MAY-19              | R463575            |
| Sulfate (SO4)                                                                                        | <0.30               |            | 0.30              | mg/L         |                        | 11-MAY-19              | R463575            |
| Dissolved Metals                                                                                     |                     |            |                   |              |                        |                        |                    |
| Dissolved Mercury Filtration Location                                                                | FIELD               |            |                   |              |                        | 11-MAY-19              | R463117            |
| Dissolved Metals Filtration Location                                                                 | FIELD               |            |                   |              |                        | 13-MAY-19              | R463308            |
| Aluminum (Al)-Dissolved                                                                              | <0.0010             |            | 0.0010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Antimony (Sb)-Dissolved                                                                              | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              |                        | R463445            |
| Arsenic (As)-Dissolved                                                                               | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Barium (Ba)-Dissolved                                                                                | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Beryllium (Be)-Dissolved                                                                             | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              |                        | R463445            |
| Bismuth (Bi)-Dissolved                                                                               | <0.000050           |            | 0.000050          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Boron (B)-Dissolved                                                                                  | <0.010              |            | 0.010             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Cadmium (Cd)-Dissolved                                                                               | <0.000050           |            | 0.0000050         | mg/L         | 13-MAY-19              |                        | R463445            |
| Calcium (Ca)-Dissolved<br>Cesium (Cs)-Dissolved                                                      | <0.050<br><0.000010 |            | 0.050<br>0.000010 | mg/L<br>mg/L | 13-MAY-19<br>13-MAY-19 | 14-MAY-19<br>14-MAY-19 | R463445<br>R463445 |
| Chromium (Cr)-Dissolved                                                                              | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Cobalt (Co)-Dissolved                                                                                | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Copper (Cu)-Dissolved                                                                                | <0.00010            |            | 0.00020           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Iron (Fe)-Dissolved                                                                                  | <0.010              |            | 0.010             | mg/L         | 13-MAY-19              |                        | R463445            |
| Lead (Pb)-Dissolved                                                                                  | <0.000050           |            | 0.000050          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Lithium (Li)-Dissolved                                                                               | <0.0010             |            | 0.0010            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Magnesium (Mg)-Dissolved                                                                             | <0.0050             |            | 0.0050            | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Manganese (Mn)-Dissolved                                                                             | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Mercury (Hg)-Dissolved                                                                               | <0.000050           |            | 0.0000050         | mg/L         | 11-MAY-19              | 13-MAY-19              | R463226            |
| Molybdenum (Mo)-Dissolved                                                                            | <0.000050           |            | 0.000050          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Nickel (Ni)-Dissolved                                                                                | <0.00050            |            | 0.00050           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Phosphorus (P)-Dissolved                                                                             | <0.050              |            | 0.050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Potassium (K)-Dissolved                                                                              | <0.050              |            | 0.050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Rubidium (Rb)-Dissolved                                                                              | <0.00020            |            | 0.00020           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Selenium (Se)-Dissolved                                                                              | <0.000050           |            | 0.000050          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Silicon (Si)-Dissolved                                                                               | <0.050              |            | 0.050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Silver (Ag)-Dissolved                                                                                | <0.000010           |            | 0.000010          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Sodium (Na)-Dissolved                                                                                | <0.050              |            | 0.050             | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Strontium (Sr)-Dissolved                                                                             | <0.00020            |            | 0.00020           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Sulfur (S)-Dissolved                                                                                 | <0.50               |            | 0.50              | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Tellurium (Te)-Dissolved                                                                             | <0.00020            |            | 0.00020           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Thallium (TI)-Dissolved                                                                              | <0.000010           |            | 0.000010          | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |
| Thorium (Th)-Dissolved                                                                               | <0.00010            |            | 0.00010           | mg/L         | 13-MAY-19              | 14-MAY-19              | R463445            |

L2271564 CONTD.... PAGE 12 of 14 Version: FINAL

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                          | Result    | Qualifier* | D.L.     | Units | Extracted | Analyzed  | Batch                |
|----------------------------------------------------|-----------|------------|----------|-------|-----------|-----------|----------------------|
| L2271564-7 WG-56484-080519-DB-07                   |           |            |          |       |           |           |                      |
| Sampled By: M. Dyck/ D. Botero on 08-MAY-19 @ 12:4 | 5         |            |          |       |           |           |                      |
| Matrix: WG                                         |           |            |          |       |           |           |                      |
| Dissolved Metals                                   |           |            |          |       |           |           |                      |
| Tin (Sn)-Dissolved                                 | <0.00010  |            | 0.00010  | mg/L  | 13-MAY-19 | 14-MAY-19 |                      |
| Titanium (Ti)-Dissolved                            | <0.00030  |            | 0.00030  | mg/L  | 13-MAY-19 | 14-MAY-19 |                      |
| Tungsten (W)-Dissolved                             | <0.00010  |            | 0.00010  | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445              |
| Uranium (U)-Dissolved                              | <0.000010 |            | 0.000010 | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445 <sup>2</sup> |
| Vanadium (V)-Dissolved                             | <0.00050  |            | 0.00050  | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445 <sup>,</sup> |
| Zinc (Zn)-Dissolved                                | <0.0010   |            | 0.0010   | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445 <sup>2</sup> |
| Zirconium (Zr)-Dissolved                           | <0.000060 |            | 0.000060 | mg/L  | 13-MAY-19 | 14-MAY-19 | R463445 <sup>2</sup> |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |
|                                                    |           |            |          |       |           |           |                      |

#### Sample Parameter Qualifier key listed:

| Qualifier                                               | Description                                                |                                                                                                               |                                                                                                                                                                                                               |
|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WSMB                                                    | Due to lab error, wat<br>results may be biase              |                                                                                                               | ered after BrCl preservation. Non-detect results are unaffected. Detected D-Hg                                                                                                                                |
| est Method R                                            | eferences:                                                 |                                                                                                               |                                                                                                                                                                                                               |
| ALS Test Code                                           | Matrix                                                     | Test Description                                                                                              | Method Reference**                                                                                                                                                                                            |
|                                                         |                                                            |                                                                                                               | APHA 2320 Alkalinity<br>od 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a<br>culated from phenolphthalein alkalinity and total alkalinity values.                         |
| BR-L-IC-N-VA<br>Inorganic anion                         | Water<br>ns are analyzed by Ion                            | Bromide in Water by IC (Low Le<br>Chromatography with conductivity                                            |                                                                                                                                                                                                               |
| CL-IC-N-VA<br>Inorganic anion                           | Water<br>ns are analyzed by Ion                            | Chloride in Water by IC<br>Chromatography with conductivity                                                   | EPA 300.1 (mod)<br>and/or UV detection.                                                                                                                                                                       |
| EC-PCT-VA<br>This analysis is<br>electrode.             | Water<br>carried out using pro                             | Conductivity (Automated)<br>cedures adapted from APHA Metho                                                   | APHA 2510 Auto. Conduc.<br>od 2510 "Conductivity". Conductivity is determined using a conductivity                                                                                                            |
| EC-SCREEN-VA<br>Qualitative ana                         |                                                            | Conductivity Screen (Internal Us<br>her@nbouried during preparation of                                        |                                                                                                                                                                                                               |
| F-IC-N-VA<br>Inorganic anion                            | Water<br>as are analyzed by Ion                            | Fluoride in Water by IC<br>Chromatography with conductivity                                                   | EPA 300.1 (mod)<br>and/or UV detection.                                                                                                                                                                       |
|                                                         | known as Total Hard                                        | Hardness<br>ness) is calculated from the sum of<br>concentrations are preferentially use                      | APHA 2340B<br>Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.<br>ad for the hardness calculation.                                                                                       |
|                                                         | are filtered (0.45 um)                                     | Diss. Mercury in Water by CVAA<br>, poeseWAffSwith hydrochloric acid, t<br>I by CVAAS or CVAFS.               | AS APHA 3030B/EPA 1631E (mod)<br>then undergo a cold-oxidation using bromine monochloride prior to reduction                                                                                                  |
| MET-D-CCMS-V<br>Water samples                           |                                                            | Dissolved Metals in Water by Cf<br>, pleed with nitric acid, and and                                          |                                                                                                                                                                                                               |
| Method Limitati                                         | ion (re: Sulfur): Sulfide                                  | e and volatile sulfur species may no                                                                          | t be recovered by this method.                                                                                                                                                                                |
| NH3-F-VA<br>This analysis is<br>of Chemistry, "I<br>al. | Water<br>carried out, on sulfur<br>Flow-injection analysis | Ammonia in Water by Fluoresce<br>ic acid preserved samples, using pr<br>s with fluorescence detection for the | nce J. ENVIRON. MONIT., 2005, 7, 37-42, RSC<br>rocedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Societ<br>e determination of trace levels of ammonium in seawater", Roslyn J. Waston e |
| NO2-L-IC-N-VA<br>Inorganic anion                        | Water<br>ns are analyzed by Ion                            | Nitrite in Water by IC (Low Level<br>Chromatography with conductivity                                         |                                                                                                                                                                                                               |
| NO3-L-IC-N-VA<br>Inorganic anion                        | Water<br>as are analyzed by Ion                            | Nitrate in Water by IC (Low Leve<br>Chromatography with conductivity                                          |                                                                                                                                                                                                               |
| PH-PCT-VA<br>This analysis is<br>electrode              | Water<br>carried out using pro                             | pH by Meter (Automated)<br>cedures adapted from APHA Metho                                                    | APHA 4500-H pH Value<br>od 4500-H "pH Value". The pH is determined in the laboratory using a pH                                                                                                               |
| It is recommen                                          | ded that this analysis                                     | be conducted in the field.                                                                                    |                                                                                                                                                                                                               |
| SO4-IC-N-VA<br>Inorganic anion                          | Water<br>ns are analyzed by Ion                            | Sulfate in Water by IC<br>Chromatography with conductivity                                                    | EPA 300.1 (mod)<br>and/or UV detection.                                                                                                                                                                       |
|                                                         |                                                            |                                                                                                               | e methods to improve performance.                                                                                                                                                                             |

| Laboratory Definition Code | Laboratory Location                                     |
|----------------------------|---------------------------------------------------------|
| VA                         | ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA |
| Chain of Custody Numbers:  |                                                         |

#### **Reference Information**

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



|                                    |                                                             |                             |                  | ,         |               |          |        |              |
|------------------------------------|-------------------------------------------------------------|-----------------------------|------------------|-----------|---------------|----------|--------|--------------|
|                                    |                                                             | Workorder:                  | L227156          | 4 R       | eport Date: 3 | 0-MAY-19 |        | Page 1 of 12 |
| 4<br>(                             | GHD Limited<br># 400 - 179 Colonnade R<br>Ottawa ON K2E 7J4 | load                        |                  |           |               |          |        |              |
| Contact:                           | Airesse MacPhee                                             |                             |                  |           |               |          |        |              |
| Test                               | Matrix                                                      | Reference                   | Result           | Qualifier | Units         | RPD      | Limit  | Analyzed     |
| ALK-TITR-VA                        | Water                                                       |                             |                  |           |               |          |        |              |
| Batch R4                           | 4636061                                                     |                             |                  |           |               |          |        |              |
| WG3047082-3<br>Alkalinity, Total   |                                                             | VA-ALK-TITR                 | -CONTROL<br>99.3 |           | %             |          | 85-115 | 15-MAY-19    |
| WG3047082-5                        | DUP                                                         | L2271563-1                  |                  |           |               |          |        |              |
| Alkalinity, Total                  | l (as CaCO3)                                                | 6.3                         | 6.3              |           | mg/L          | 0.0      | 20     | 15-MAY-19    |
| WG3047082-1<br>Alkalinity, Total   | MB<br>I (as CaCO3)                                          |                             | <1.0             |           | mg/L          |          | 1      | 15-MAY-19    |
| CL-IC-N-VA                         | Water                                                       |                             |                  |           |               |          |        |              |
| Batch R4                           | 4635753                                                     |                             |                  |           |               |          |        |              |
| WG3047079-3                        | DUP                                                         | L2271563-1                  |                  |           |               |          |        |              |
| Chloride (Cl)                      |                                                             | 0.80                        | 0.79             |           | mg/L          | 1.7      | 20     | 11-MAY-19    |
| WG3047079-2<br>Chloride (Cl)       | LCS                                                         |                             | 100.7            |           | %             |          | 90-110 | 11-MAY-19    |
| WG3047079-1                        | МВ                                                          |                             |                  |           |               |          |        |              |
| Chloride (Cl)                      |                                                             |                             | <0.50            |           | mg/L          |          | 0.5    | 11-MAY-19    |
| WG3047079-4<br>Chloride (Cl)       | MS                                                          | L2271564-2                  | 101.2            |           | %             |          | 75-125 | 11-MAY-19    |
| EC-PCT-VA                          | Water                                                       |                             |                  |           |               |          |        |              |
| Batch R4                           | 4636061                                                     |                             |                  |           |               |          |        |              |
| WG3047082-4                        | CRM                                                         | VA-EC-PCT-C                 | ONTROL           |           |               |          |        |              |
| Conductivity                       |                                                             |                             | 103.3            |           | %             |          | 90-110 | 15-MAY-19    |
| WG3047082-5<br>Conductivity        | DUP                                                         | <b>L2271563-1</b><br>15.4   | 15.3             |           | uS/cm         | 0.7      | 10     | 15-MAY-19    |
| WG3047082-1                        | МВ                                                          |                             |                  |           |               |          |        |              |
| Conductivity                       |                                                             |                             | <2.0             |           | uS/cm         |          | 2      | 15-MAY-19    |
| F-IC-N-VA                          | Water                                                       |                             |                  |           |               |          |        |              |
| Batch R4                           | 4635753                                                     |                             |                  |           |               |          |        |              |
| WG3047079-3<br>Fluoride (F)        | DUP                                                         | <b>L2271563-1</b><br><0.020 | <0.020           | RPD-NA    | mg/L          | N/A      | 20     | 11-MAY-19    |
| <b>WG3047079-2</b><br>Fluoride (F) | LCS                                                         |                             | 100.7            |           | %             |          | 90-110 | 11-MAY-19    |
| <b>WG3047079-1</b><br>Fluoride (F) | МВ                                                          |                             | <0.020           |           | mg/L          |          | 0.02   | 11-MAY-19    |
| <b>WG3047079-4</b><br>Fluoride (F) | MS                                                          | L2271564-2                  | 101.5            |           | %             |          | 75-125 | 11-MAY-19    |
| HG-D-CVAA-VA                       | Water                                                       |                             |                  |           |               |          |        |              |



|                              |               |                           | Workorder:                  | _2271564   | Rep       | oort Date: 30-MA | Y-19       |          | Page 2 of 12 |
|------------------------------|---------------|---------------------------|-----------------------------|------------|-----------|------------------|------------|----------|--------------|
|                              | Ottawa ON     | Colonnade Roa<br>NK2E 7J4 | d                           |            |           |                  |            |          |              |
| Contact:                     | Airesse Ma    | icPhee                    |                             |            |           |                  |            |          |              |
| Test                         |               | Matrix                    | Reference                   | Result     | Qualifier | Units            | RPD        | Limit    | Analyzed     |
| HG-D-CVAA-VA                 |               | Water                     |                             |            |           |                  |            |          |              |
|                              | 84632265      |                           |                             |            |           |                  |            |          |              |
| WG3047343-3<br>Mercury (Hg)- | -             |                           | L2271563-3<br><0.0000050    | <0.0000050 | RPD-NA    | mg/L             | N/A        | 20       | 13-MAY-19    |
| WG3047343-2<br>Mercury (Hg)- | LCS           |                           |                             | 94.5       |           | %                |            | 80-120   | 13-MAY-19    |
| WG3047343-1                  | МВ            |                           |                             |            |           |                  |            |          |              |
| Mercury (Hg)-                | Dissolved     |                           |                             | <0.000050  |           | mg/L             |            | 0.000005 | 13-MAY-19    |
| WG3047343-4<br>Mercury (Hg)- |               |                           | L2271565-2                  | 92.1       |           | %                |            | 70-130   | 13-MAY-19    |
| Batch R                      | 84647372      |                           |                             |            |           |                  |            |          |              |
| WG3062065-3<br>Mercury (Hg)- | -             |                           | L2271564-1<br>0.0000100     | 0.0000100  |           | mg/L             | 0.2        | 20       | 00 MAX 40    |
| WG3062065-2                  |               |                           | 0.0000100                   | 0.0000100  |           | ilig/L           | 0.2        | 20       | 29-MAY-19    |
| Mercury (Hg)-                |               |                           |                             | 99.7       |           | %                |            | 80-120   | 29-MAY-19    |
| WG3062065-1<br>Mercury (Hg)- |               |                           |                             | <0.0000050 |           | mg/L             |            | 0.000005 | 29-MAY-19    |
| MET-D-CCMS-VA                | ۱.            | Water                     |                             |            |           |                  |            |          |              |
| Batch R                      | 84634451      |                           |                             |            |           |                  |            |          |              |
| WG3048430-3<br>Aluminum (Al) | -             |                           | <b>L2271564-2</b><br>0.0044 | 0.0041     |           | mg/L             | 8.8        | 20       | 14-MAY-19    |
| Antimony (Sb)                |               |                           | <0.00010                    | <0.00010   | RPD-NA    | mg/L             | 0.0<br>N/A | 20       | 14-MAY-19    |
| Arsenic (As)-E               |               |                           | <0.00010                    | <0.00010   | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Barium (Ba)-D                |               |                           | 0.00093                     | 0.00090    |           | mg/L             | 3.5        | 20       | 14-MAY-19    |
| Beryllium (Be)               | -Dissolved    |                           | <0.00010                    | <0.00010   | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Bismuth (Bi)-D               | Dissolved     |                           | <0.000050                   | <0.000050  | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Boron (B)-Diss               | solved        |                           | <0.010                      | <0.010     | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Cadmium (Cd                  | )-Dissolved   |                           | <0.000050                   | <0.000050  | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Calcium (Ca)-                | Dissolved     |                           | 31.2                        | 32.2       |           | mg/L             | 3.1        | 20       | 14-MAY-19    |
| Cesium (Cs)-I                | Dissolved     |                           | <0.000010                   | <0.000010  | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Chromium (Cr                 | r)-Dissolved  |                           | 0.00022                     | 0.00023    |           | mg/L             | 4.4        | 20       | 14-MAY-19    |
| Cobalt (Co)-D                | issolved      |                           | <0.00010                    | <0.00010   | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Copper (Cu)-E                | Dissolved     |                           | <0.00020                    | <0.00020   | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Iron (Fe)-Diss               | olved         |                           | <0.010                      | <0.010     | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Lead (Pb)-Dis                | solved        |                           | <0.000050                   | <0.000050  | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Lithium (Li)-Di              | issolved      |                           | <0.0010                     | <0.0010    | RPD-NA    | mg/L             | N/A        | 20       | 14-MAY-19    |
| Magnesium (N                 | /lg)-Dissolve | ed                        | 2.02                        | 2.01       |           | mg/L             | 0.4        | 20       | 14-MAY-19    |



Client:

Contact:

Batch

Boron (B)-Dissolved

Cadmium (Cd)-Dissolved

Calcium (Ca)-Dissolved

Cesium (Cs)-Dissolved

Test

#### **Quality Control Report**

Workorder: L2271564 Report Date: 30-MAY-19 Page 3 of 12 GHD Limited # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Airesse MacPhee Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water R4634451 WG3048430-3 DUP L2271564-2 Manganese (Mn)-Dissolved 0.00013 0.00014 mg/L 5.1 20 14-MAY-19 Molybdenum (Mo)-Dissolved 0.000125 0.000124 mg/L 1.3 20 14-MAY-19 Nickel (Ni)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 14-MAY-19 Phosphorus (P)-Dissolved < 0.050 < 0.050 **RPD-NA** mg/L N/A 20 14-MAY-19 Potassium (K)-Dissolved 0.118 0.116 mg/L 1.9 20 14-MAY-19 Rubidium (Rb)-Dissolved < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 20 14-MAY-19 Selenium (Se)-Dissolved 0.000080 0.000057 J mg/L 0.000023 0.0001 14-MAY-19 Silicon (Si)-Dissolved 1.10 1.14 mg/L 3.3 20 14-MAY-19 Silver (Ag)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 14-MAY-19 Sodium (Na)-Dissolved 0.820 0.809 mg/L 1.3 20 14-MAY-19 Strontium (Sr)-Dissolved 0.0381 0.0384 mg/L 0.7 20 14-MAY-19 Sulfur (S)-Dissolved 0.70 0.66 mg/L 6.1 20 14-MAY-19 Tellurium (Te)-Dissolved < 0.00020 < 0.00020 mg/L N/A **RPD-NA** 20 14-MAY-19 Thallium (TI)-Dissolved < 0.000010 < 0.000010 mg/L **RPD-NA** N/A 20 14-MAY-19 Thorium (Th)-Dissolved < 0.00010 < 0.00010 mg/L **RPD-NA** N/A 20 14-MAY-19 Tin (Sn)-Dissolved < 0.00010 < 0.00010 mg/L **RPD-NA** N/A 20 14-MAY-19 Titanium (Ti)-Dissolved < 0.00030 < 0.00030 **RPD-NA** mg/L N/A 20 14-MAY-19 Tungsten (W)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 14-MAY-19 Uranium (U)-Dissolved 0.000184 0.000186 mg/L 1.3 20 14-MAY-19 Vanadium (V)-Dissolved < 0.00050 < 0.00050 mg/L **RPD-NA** N/A 20 14-MAY-19 Zinc (Zn)-Dissolved <0.0010 < 0.0010 mg/L **RPD-NA** N/A 20 14-MAY-19 Zirconium (Zr)-Dissolved < 0.000060 < 0.000060 mg/L **RPD-NA** 20 N/A 14-MAY-19 WG3048430-2 I CS Aluminum (AI)-Dissolved 100.0 % 80-120 14-MAY-19 Antimony (Sb)-Dissolved 99.0 % 80-120 14-MAY-19 93.9 % Arsenic (As)-Dissolved 80-120 14-MAY-19 Barium (Ba)-Dissolved 95.2 % 80-120 14-MAY-19 Beryllium (Be)-Dissolved 92.6 % 80-120 14-MAY-19 Bismuth (Bi)-Dissolved 97.2 % 80-120 14-MAY-19

%

%

%

%

80-120

80-120

80-120

80-120

14-MAY-19

14-MAY-19

14-MAY-19

14-MAY-19

92.7

94.8

92.7

99.3



Client:

Contact:

Test

# **Quality Control Report**

Workorder: L2271564 Report Date: 30-MAY-19 Page 4 of 12 GHD Limited # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Airesse MacPhee Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water

| Batch R4634451            |          |      |        |           |
|---------------------------|----------|------|--------|-----------|
| WG3048430-2 LCS           |          |      |        |           |
| Chromium (Cr)-Dissolved   | 94.6     | %    | 80-120 | 14-MAY-19 |
| Cobalt (Co)-Dissolved     | 96.3     | %    | 80-120 | 14-MAY-19 |
| Copper (Cu)-Dissolved     | 94.5     | %    | 80-120 | 14-MAY-19 |
| Iron (Fe)-Dissolved       | 94.5     | %    | 80-120 | 14-MAY-19 |
| Lead (Pb)-Dissolved       | 96.9     | %    | 80-120 | 14-MAY-19 |
| Lithium (Li)-Dissolved    | 91.1     | %    | 80-120 | 14-MAY-19 |
| Magnesium (Mg)-Dissolved  | 96.4     | %    | 80-120 | 14-MAY-19 |
| Manganese (Mn)-Dissolved  | 97.4     | %    | 80-120 | 14-MAY-19 |
| Molybdenum (Mo)-Dissolved | 92.9     | %    | 80-120 | 14-MAY-19 |
| Nickel (Ni)-Dissolved     | 95.6     | %    | 80-120 | 14-MAY-19 |
| Phosphorus (P)-Dissolved  | 96.6     | %    | 70-130 | 14-MAY-19 |
| Potassium (K)-Dissolved   | 95.9     | %    | 80-120 | 14-MAY-19 |
| Rubidium (Rb)-Dissolved   | 97.1     | %    | 80-120 | 14-MAY-19 |
| Selenium (Se)-Dissolved   | 93.1     | %    | 80-120 | 14-MAY-19 |
| Silicon (Si)-Dissolved    | 98.2     | %    | 60-140 | 14-MAY-19 |
| Silver (Ag)-Dissolved     | 98.6     | %    | 80-120 | 14-MAY-19 |
| Sodium (Na)-Dissolved     | 97.1     | %    | 80-120 | 14-MAY-19 |
| Strontium (Sr)-Dissolved  | 96.4     | %    | 80-120 | 14-MAY-19 |
| Sulfur (S)-Dissolved      | 89.4     | %    | 80-120 | 14-MAY-19 |
| Tellurium (Te)-Dissolved  | 100.3    | %    | 80-120 | 14-MAY-19 |
| Thallium (TI)-Dissolved   | 98.0     | %    | 80-120 | 14-MAY-19 |
| Thorium (Th)-Dissolved    | 100.2    | %    | 80-120 | 14-MAY-19 |
| Tin (Sn)-Dissolved        | 93.7     | %    | 80-120 | 14-MAY-19 |
| Titanium (Ti)-Dissolved   | 94.2     | %    | 80-120 | 14-MAY-19 |
| Tungsten (W)-Dissolved    | 97.9     | %    | 80-120 | 14-MAY-19 |
| Uranium (U)-Dissolved     | 97.8     | %    | 80-120 | 14-MAY-19 |
| Vanadium (V)-Dissolved    | 95.1     | %    | 80-120 | 14-MAY-19 |
| Zinc (Zn)-Dissolved       | 97.3     | %    | 80-120 | 14-MAY-19 |
| Zirconium (Zr)-Dissolved  | 93.9     | %    | 80-120 | 14-MAY-19 |
| WG3048430-1 MB            |          |      |        |           |
| Aluminum (Al)-Dissolved   | <0.0010  | mg/L | 0.001  | 14-MAY-19 |
| Antimony (Sb)-Dissolved   | <0.00010 | mg/L | 0.0001 | 14-MAY-19 |
| Arsenic (As)-Dissolved    | <0.00010 | mg/L | 0.0001 | 14-MAY-19 |
| Barium (Ba)-Dissolved     | <0.00010 | mg/L | 0.0001 | 14-MAY-19 |



Workorder: L2271564 Report Date: 30-MAY-19 Page 5 of 12 GHD Limited Client: # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water R4634451 Batch WG3048430-1 MB 0.0001 Beryllium (Be)-Dissolved < 0.00010 mg/L 14-MAY-19 Bismuth (Bi)-Dissolved 0.00005 < 0.000050 mg/L 14-MAY-19 0.01 Boron (B)-Dissolved < 0.010 mg/L 14-MAY-19 Cadmium (Cd)-Dissolved < 0.0000050 mg/L 0.000005 14-MAY-19 Calcium (Ca)-Dissolved 0.05 < 0.050 mg/L 14-MAY-19 Cesium (Cs)-Dissolved < 0.000010 mg/L 0.00001 14-MAY-19 0.0001 Chromium (Cr)-Dissolved < 0.00010 mg/L 14-MAY-19 Cobalt (Co)-Dissolved < 0.00010 mg/L 0.0001 14-MAY-19 Copper (Cu)-Dissolved < 0.00020 mg/L 0.0002 14-MAY-19 Iron (Fe)-Dissolved <0.010 mg/L 0.01 14-MAY-19 Lead (Pb)-Dissolved < 0.000050 mg/L 0.00005 14-MAY-19 Lithium (Li)-Dissolved 0.001 < 0.0010 mg/L 14-MAY-19 Magnesium (Mg)-Dissolved < 0.0050 mg/L 0.005 14-MAY-19 Manganese (Mn)-Dissolved < 0.00010 0.0001 mg/L 14-MAY-19 Molybdenum (Mo)-Dissolved < 0.000050 mg/L 0.00005 14-MAY-19 Nickel (Ni)-Dissolved 0.0005 < 0.00050 mg/L 14-MAY-19 Phosphorus (P)-Dissolved < 0.050 0.05 mg/L 14-MAY-19 Potassium (K)-Dissolved <0.050 mg/L 0.05 14-MAY-19 Rubidium (Rb)-Dissolved < 0.00020 0.0002 mg/L 14-MAY-19 Selenium (Se)-Dissolved < 0.000050 0.00005 mg/L 14-MAY-19 Silicon (Si)-Dissolved <0.050 0.05 mg/L 14-MAY-19 Silver (Ag)-Dissolved < 0.000010 mg/L 0.00001 14-MAY-19 Sodium (Na)-Dissolved < 0.050 mg/L 0.05 14-MAY-19 Strontium (Sr)-Dissolved < 0.00020 0.0002 mg/L 14-MAY-19 Sulfur (S)-Dissolved < 0.50 mg/L 0.5 14-MAY-19 Tellurium (Te)-Dissolved < 0.00020 0.0002 mg/L 14-MAY-19 Thallium (TI)-Dissolved < 0.000010 mg/L 0.00001 14-MAY-19 Thorium (Th)-Dissolved 0.0001 < 0.00010 mg/L 14-MAY-19 Tin (Sn)-Dissolved 0.0001 < 0.00010 mg/L 14-MAY-19 Titanium (Ti)-Dissolved < 0.00030 0.0003 mg/L 14-MAY-19 Tungsten (W)-Dissolved < 0.00010 0.0001 mg/L 14-MAY-19 Uranium (U)-Dissolved < 0.000010 mg/L 0.00001 14-MAY-19 Vanadium (V)-Dissolved < 0.00050 mg/L 0.0005 14-MAY-19



Workorder: L2271564 Report Date: 30-MAY-19 Page 6 of 12 GHD Limited Client: # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water Batch R4634451 WG3048430-1 MB Zinc (Zn)-Dissolved < 0.0010 0.001 mg/L 14-MAY-19 Zirconium (Zr)-Dissolved < 0.000060 mg/L 0.00006 14-MAY-19 Batch R4639780 WG3054859-3 L2271564-1 DUP Aluminum (AI)-Dissolved 0.0121 0.0124 mg/L 2.4 20 21-MAY-19 Antimony (Sb)-Dissolved < 0.00010 < 0.00010 mg/L N/A 20 **RPD-NA** 21-MAY-19 Arsenic (As)-Dissolved < 0.00010 < 0.00010 mg/L N/A 20 **RPD-NA** 21-MAY-19 Barium (Ba)-Dissolved 0.00052 0.00054 mg/L 3.7 20 21-MAY-19 Beryllium (Be)-Dissolved < 0.00010 < 0.00010 mg/L **RPD-NA** N/A 20 21-MAY-19 Bismuth (Bi)-Dissolved < 0.000050 < 0.000050 mg/L **RPD-NA** N/A 20 21-MAY-19 Boron (B)-Dissolved < 0.010 < 0.010 RPD-NA mg/L N/A 20 21-MAY-19 Cadmium (Cd)-Dissolved < 0.0000050 < 0.0000050 **RPD-NA** mg/L N/A 20 21-MAY-19 Calcium (Ca)-Dissolved 28.0 27.8 mg/L 0.7 20 21-MAY-19 Cesium (Cs)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 21-MAY-19 Chromium (Cr)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 21-MAY-19 Cobalt (Co)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 21-MAY-19 Copper (Cu)-Dissolved < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 20 21-MAY-19 Iron (Fe)-Dissolved < 0.010 <0.010 **RPD-NA** mg/L N/A 20 21-MAY-19 Lead (Pb)-Dissolved < 0.000050 < 0.000050 **RPD-NA** mg/L N/A 20 21-MAY-19 Lithium (Li)-Dissolved < 0.0010 < 0.0010 **RPD-NA** mg/L N/A 20 21-MAY-19 Magnesium (Mg)-Dissolved 2.37 2.42 mg/L 1.9 20 21-MAY-19 Manganese (Mn)-Dissolved 0.00032 0.00038 mg/L 18 20 21-MAY-19 Molybdenum (Mo)-Dissolved 0.000105 0.000096 mg/L 8.4 20 21-MAY-19 Nickel (Ni)-Dissolved < 0.00050 < 0.00050 mg/L **RPD-NA** N/A 20 21-MAY-19 Phosphorus (P)-Dissolved < 0.050 < 0.050 mg/L **RPD-NA** N/A 20 21-MAY-19 Potassium (K)-Dissolved < 0.050 0.050 mg/L N/A 20 **RPD-NA** 21-MAY-19 Rubidium (Rb)-Dissolved < 0.00020 < 0.00020 mg/L N/A 20 **RPD-NA** 21-MAY-19 Selenium (Se)-Dissolved 0.000058 0.000059 mg/L 1.4 20 21-MAY-19 Silicon (Si)-Dissolved 0.838 mg/L 0.827 1.3 20 21-MAY-19 Silver (Ag)-Dissolved < 0.000010 < 0.000010 mg/L **RPD-NA** N/A 20 21-MAY-19 Sodium (Na)-Dissolved 0.838 0.828 mg/L 1.1 20 21-MAY-19 Strontium (Sr)-Dissolved 0.0409 0.0399 mg/L 2.4 20 21-MAY-19 Sulfur (S)-Dissolved <0.50 <0.50 mg/L **RPD-NA** N/A 20 21-MAY-19



Test

#### **Quality Control Report**

Workorder: L2271564 Report Date: 30-MAY-19 Page 7 of 12 GHD Limited Client: # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water R4639780 Batch WG3054859-3 DUP L2271564-1 Tellurium (Te)-Dissolved < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 20 21-MAY-19 Thallium (TI)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 21-MAY-19 Thorium (Th)-Dissolved < 0.00010 < 0.00010 RPD-NA mg/L N/A 20 21-MAY-19 Tin (Sn)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 21-MAY-19 Titanium (Ti)-Dissolved < 0.00030 < 0.00030 **RPD-NA** mg/L N/A 20 21-MAY-19 Tungsten (W)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 21-MAY-19 Uranium (U)-Dissolved 0.000144 0.000152 mg/L 5.3 20 21-MAY-19 Vanadium (V)-Dissolved < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 21-MAY-19 Zinc (Zn)-Dissolved <0.0010 <0.0010 RPD-NA mg/L N/A 20 21-MAY-19 Zirconium (Zr)-Dissolved < 0.000060 < 0.000060 **RPD-NA** mg/L N/A 20 21-MAY-19 WG3054859-2 LCS Aluminum (AI)-Dissolved 95.0 % 80-120 21-MAY-19 Antimony (Sb)-Dissolved 94.1 % 80-120 21-MAY-19 Arsenic (As)-Dissolved 93.8 % 80-120 21-MAY-19 Barium (Ba)-Dissolved 98.8 % 80-120 21-MAY-19 Beryllium (Be)-Dissolved 98.1 % 80-120 21-MAY-19 Bismuth (Bi)-Dissolved 97.3 % 80-120 21-MAY-19 Boron (B)-Dissolved 95.0 % 80-120 21-MAY-19 Cadmium (Cd)-Dissolved 94.9 % 80-120 21-MAY-19 Calcium (Ca)-Dissolved 94.5 % 80-120 21-MAY-19 Cesium (Cs)-Dissolved 95.1 % 80-120 21-MAY-19 Chromium (Cr)-Dissolved 93.5 % 80-120 21-MAY-19 Cobalt (Co)-Dissolved 94.4 % 80-120 21-MAY-19 Copper (Cu)-Dissolved 92.6 % 80-120 21-MAY-19 Iron (Fe)-Dissolved 92.9 % 80-120 21-MAY-19 Lead (Pb)-Dissolved 98.3 % 80-120 21-MAY-19 Lithium (Li)-Dissolved 99.5 % 80-120 21-MAY-19 Magnesium (Mg)-Dissolved 101.3 % 80-120 21-MAY-19 Manganese (Mn)-Dissolved 94.8 % 80-120 21-MAY-19 Molybdenum (Mo)-Dissolved 99.96 % 80-120 21-MAY-19 Nickel (Ni)-Dissolved % 95.6 80-120 21-MAY-19 Phosphorus (P)-Dissolved 95.2 % 70-130 21-MAY-19 Potassium (K)-Dissolved 96.1 % 80-120 21-MAY-19



Report Date: 30-MAY-19 Workorder: L2271564 Page 8 of 12

GHD Limited # 400 - 179 Colonnade Road

Ottawa ON K2E 7J4 Airesse MacPhee

Contact:

Client:

| Test                                       | Matrix | Reference | Result       | Qualifier | Units | RPD | Limit            | Analyzed               |
|--------------------------------------------|--------|-----------|--------------|-----------|-------|-----|------------------|------------------------|
| MET-D-CCMS-VA                              | Water  |           |              |           |       |     |                  |                        |
| Batch R4639780                             |        |           |              |           |       |     |                  |                        |
| WG3054859-2 LCS<br>Rubidium (Rb)-Dissolved | 4      |           | 97.2         |           | %     |     | 00.400           | 04 MAX 40              |
| Selenium (Se)-Dissolved                    |        |           | 97.2<br>94.0 |           | %     |     | 80-120           | 21-MAY-19              |
| Silicon (Si)-Dissolved                     | 4      |           | 94.0<br>91.1 |           | %     |     | 80-120           | 21-MAY-19              |
| Silver (Ag)-Dissolved                      |        |           | 97.9         |           | %     |     | 60-140           | 21-MAY-19<br>21-MAY-19 |
| Sodium (Na)-Dissolved                      |        |           | 97.9<br>91.0 |           | %     |     | 80-120<br>80-120 | -                      |
| Strontium (Sr)-Dissolved                   |        |           | 96.1         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Sulfur (S)-Dissolved                       |        |           | 84.1         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Tellurium (Te)-Dissolved                   |        |           | 91.5         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Thallium (TI)-Dissolved                    |        |           | 97.3         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Thorium (Th)-Dissolved                     |        |           | 88.1         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Tin (Sn)-Dissolved                         |        |           | 94.0         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Titanium (Ti)-Dissolved                    |        |           | 90.1         |           | %     |     | 80-120           | 21-MAY-19<br>21-MAY-19 |
| Tungsten (W)-Dissolved                     |        |           | 98.9         |           | %     |     | 80-120           | 21-MAY-19              |
| Uranium (U)-Dissolved                      |        |           | 95.0         |           | %     |     | 80-120           | 21-MAY-19              |
| Vanadium (V)-Dissolved                     |        |           | 93.9         |           | %     |     | 80-120           | 21-MAY-19              |
| Zinc (Zn)-Dissolved                        |        |           | 92.6         |           | %     |     | 80-120           | 21-MAY-19              |
| Zirconium (Zr)-Dissolved                   | 1      |           | 93.4         |           | %     |     | 80-120           | 21-MAY-19              |
| WG3054859-1 MB                             |        |           |              |           |       |     | 00 120           | 21 10/21 10            |
| Aluminum (Al)-Dissolved                    | l      |           | <0.0010      |           | mg/L  |     | 0.001            | 21-MAY-19              |
| Antimony (Sb)-Dissolved                    | I      |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Arsenic (As)-Dissolved                     |        |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Barium (Ba)-Dissolved                      |        |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Beryllium (Be)-Dissolved                   |        |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Bismuth (Bi)-Dissolved                     |        |           | <0.00005     | 0         | mg/L  |     | 0.00005          | 21-MAY-19              |
| Boron (B)-Dissolved                        |        |           | <0.010       |           | mg/L  |     | 0.01             | 21-MAY-19              |
| Cadmium (Cd)-Dissolved                     | d      |           | <0.00000     | 50        | mg/L  |     | 0.000005         | 21-MAY-19              |
| Calcium (Ca)-Dissolved                     |        |           | <0.050       |           | mg/L  |     | 0.05             | 21-MAY-19              |
| Cesium (Cs)-Dissolved                      |        |           | <0.00001     | 0         | mg/L  |     | 0.00001          | 21-MAY-19              |
| Chromium (Cr)-Dissolve                     | d      |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Cobalt (Co)-Dissolved                      |        |           | <0.00010     |           | mg/L  |     | 0.0001           | 21-MAY-19              |
| Copper (Cu)-Dissolved                      |        |           | <0.00020     |           | mg/L  |     | 0.0002           | 21-MAY-19              |
| Iron (Fe)-Dissolved                        |        |           | <0.010       |           | mg/L  |     | 0.01             | 21-MAY-19              |
| Lead (Pb)-Dissolved                        |        |           | <0.00005     | 0         | mg/L  |     | 0.00005          | 21-MAY-19              |
| Lithium (Li)-Dissolved                     |        |           | <0.0010      |           | mg/L  |     | 0.001            | 21-MAY-19              |



|                               |                                                                            |            |          | .,        |                  |        |         |              |
|-------------------------------|----------------------------------------------------------------------------|------------|----------|-----------|------------------|--------|---------|--------------|
|                               |                                                                            | Workorder: | L227156  | 4         | Report Date: 30- | MAY-19 |         | Page 9 of 12 |
| #<br>0                        | HD Limited<br>400 - 179 Colonnade Ro<br>ttawa ON K2E 7J4<br>iresse MacPhee | oad        |          |           |                  |        |         |              |
| Test                          | Matrix                                                                     | Reference  | Result   | Qualifier | Units            | RPD    | Limit   | Applygod     |
|                               | Matrix                                                                     | Reference  | Result   | Quaimer   | Units            | KFD    | Linin   | Analyzed     |
| MET-D-CCMS-VA                 | Water                                                                      |            |          |           |                  |        |         |              |
|                               | 639780                                                                     |            |          |           |                  |        |         |              |
| WG3054859-1<br>Magnesium (Mg  | MB<br>)-Dissolved                                                          |            | <0.0050  |           | mg/L             |        | 0.005   | 21-MAY-19    |
| Manganese (Mn                 |                                                                            |            | <0.00010 |           | mg/L             |        | 0.0001  | 21-MAY-19    |
| Molybdenum (M                 |                                                                            |            | <0.00005 |           | mg/L             |        | 0.00005 | 21-MAY-19    |
| Nickel (Ni)-Disso             |                                                                            |            | <0.00050 |           | mg/L             |        | 0.0005  | 21-MAY-19    |
| Phosphorus (P)-               | Dissolved                                                                  |            | <0.050   |           | mg/L             |        | 0.05    | 21-MAY-19    |
| Potassium (K)-D               | Dissolved                                                                  |            | <0.050   |           | mg/L             |        | 0.05    | 21-MAY-19    |
| Rubidium (Rb)-[               | Dissolved                                                                  |            | <0.00020 |           | mg/L             |        | 0.0002  | 21-MAY-19    |
| Selenium (Se)-D               | Dissolved                                                                  |            | <0.00005 | 0         | mg/L             |        | 0.00005 | 21-MAY-19    |
| Silicon (Si)-Diss             | olved                                                                      |            | <0.050   |           | mg/L             |        | 0.05    | 21-MAY-19    |
| Silver (Ag)-Disse             | olved                                                                      |            | <0.00001 | 0         | mg/L             |        | 0.00001 | 21-MAY-19    |
| Sodium (Na)-Dis               | ssolved                                                                    |            | <0.050   |           | mg/L             |        | 0.05    | 21-MAY-19    |
| Strontium (Sr)-D              | Dissolved                                                                  |            | <0.00020 |           | mg/L             |        | 0.0002  | 21-MAY-19    |
| Sulfur (S)-Disso              | lved                                                                       |            | <0.50    |           | mg/L             |        | 0.5     | 21-MAY-19    |
| Tellurium (Te)-D              | Dissolved                                                                  |            | <0.00020 |           | mg/L             |        | 0.0002  | 21-MAY-19    |
| Thallium (TI)-Dis             | ssolved                                                                    |            | <0.00001 | 0         | mg/L             |        | 0.00001 | 21-MAY-19    |
| Thorium (Th)-Di               | ssolved                                                                    |            | <0.00010 |           | mg/L             |        | 0.0001  | 21-MAY-19    |
| Tin (Sn)-Dissolv              | ed                                                                         |            | <0.00010 |           | mg/L             |        | 0.0001  | 21-MAY-19    |
| Titanium (Ti)-Dis             | ssolved                                                                    |            | <0.00030 |           | mg/L             |        | 0.0003  | 21-MAY-19    |
| Tungsten (W)-D                | issolved                                                                   |            | <0.00010 |           | mg/L             |        | 0.0001  | 21-MAY-19    |
| Uranium (U)-Dis               | solved                                                                     |            | <0.00001 | 0         | mg/L             |        | 0.00001 | 21-MAY-19    |
| Vanadium (V)-D                | issolved                                                                   |            | <0.00050 |           | mg/L             |        | 0.0005  | 21-MAY-19    |
| Zinc (Zn)-Dissol              | ved                                                                        |            | <0.0010  |           | mg/L             |        | 0.001   | 21-MAY-19    |
| Zirconium (Zr)-D              | Dissolved                                                                  |            | <0.00006 | 0         | mg/L             |        | 0.00006 | 21-MAY-19    |
| NH3-F-VA                      | Water                                                                      |            |          |           |                  |        |         |              |
| Batch R4                      | 631453                                                                     |            |          |           |                  |        |         |              |
| WG3047426-3                   | DUP                                                                        | L2271564-1 |          |           |                  |        |         |              |
| Ammonia, Total                |                                                                            | 0.0073     | 0.0068   |           | mg/L             | 7.5    | 20      | 12-MAY-19    |
| WG3047426-2<br>Ammonia, Total |                                                                            |            | 96.6     |           | %                |        | 85-115  | 12-MAY-19    |
| WG3047426-1<br>Ammonia, Total | MB<br>(as N)                                                               |            | <0.0050  |           | mg/L             |        | 0.005   | 12-MAY-19    |
| WG3047426-4<br>Ammonia, Total | MS<br>(as N)                                                               | L2271564-2 | 96.9     |           | %                |        | 75-125  | 12-MAY-19    |
|                               | Water                                                                      |            |          |           |                  |        |         |              |

NO2-L-IC-N-VA

Water



|                                      |           |                                       |                              |          | -         | -           |           |         |               |
|--------------------------------------|-----------|---------------------------------------|------------------------------|----------|-----------|-------------|-----------|---------|---------------|
|                                      |           |                                       | Workorder:                   | L2271564 | 1 R       | eport Date: | 30-MAY-19 |         | Page 10 of 12 |
| Client:                              |           | ited<br>79 Colonnade Ro<br>DN K2E 7J4 | ad                           |          |           |             |           |         |               |
| Contact:                             | Airesse N | lacPhee                               |                              |          |           |             |           |         |               |
| Test                                 |           | Matrix                                | Reference                    | Result   | Qualifier | Units       | RPD       | Limit   | Analyzed      |
| NO2-L-IC-N-VA                        |           | Water                                 |                              |          |           |             |           |         |               |
| Batch F                              | R4635753  |                                       |                              |          |           |             |           |         |               |
| <b>WG3047079-3</b><br>Nitrite (as N) | DUP       |                                       | <b>L2271563-1</b><br><0.0010 | <0.0010  | RPD-NA    | mg/L        | N/A       | 20      | 11-MAY-19     |
| WG3047079-2<br>Nitrite (as N)        | LCS       |                                       |                              | 100.5    |           | %           |           | 90-110  | 11-MAY-19     |
| WG3047079-1<br>Nitrite (as N)        | MB        |                                       |                              | <0.0010  |           | mg/L        |           | 0.001   | 11-MAY-19     |
| <b>WG3047079-4</b><br>Nitrite (as N) | MS        |                                       | L2271564-2                   | 100.4    |           | %           |           | 75-125  | 11-MAY-19     |
| NO3-L-IC-N-VA                        |           | Water                                 |                              |          |           |             |           |         |               |
| Batch F                              | R4635753  |                                       |                              |          |           |             |           |         |               |
| WG3047079-3                          |           |                                       | L2271563-1                   |          |           |             |           |         |               |
| Nitrate (as N)                       |           |                                       | <0.0050                      | <0.0050  | RPD-NA    | mg/L        | N/A       | 20      | 11-MAY-19     |
| WG3047079-2<br>Nitrate (as N)        |           |                                       |                              | 101.5    |           | %           |           | 90-110  | 11-MAY-19     |
| WG3047079-1<br>Nitrate (as N)        |           |                                       |                              | <0.0050  |           | mg/L        |           | 0.005   | 11-MAY-19     |
| WG3047079-4<br>Nitrate (as N)        |           |                                       | L2271564-2                   | 102.0    |           | %           |           | 75-125  | 11-MAY-19     |
| PH-PCT-VA                            |           | Water                                 |                              |          |           |             |           |         |               |
| Batch F                              | R4636061  |                                       |                              |          |           |             |           |         |               |
| WG3047082-2                          | CRM       |                                       | VA-PH7-BUF                   |          |           |             |           |         |               |
| рН                                   |           |                                       |                              | 6.99     |           | pН          |           | 6.9-7.1 | 15-MAY-19     |
| <b>WG3047082-5</b><br>рН             | DUP       |                                       | <b>L2271563-1</b><br>7.05    | 7.02     | J         | рН          | 0.03      | 0.3     | 15-MAY-19     |
| SO4-IC-N-VA                          |           | Water                                 |                              |          |           |             |           |         |               |
| Batch F                              | R4635753  |                                       |                              |          |           |             |           |         |               |
| WG3047079-3                          | DUP       |                                       | L2271563-1                   |          |           |             |           |         |               |
| Sulfate (SO4)                        |           |                                       | <0.30                        | <0.30    | RPD-NA    | mg/L        | N/A       | 20      | 11-MAY-19     |
| WG3047079-2<br>Sulfate (SO4)         |           |                                       |                              | 101.0    |           | %           |           | 90-110  | 11-MAY-19     |
| WG3047079-1<br>Sulfate (SO4)         |           |                                       |                              | <0.30    |           | mg/L        |           | 0.3     | 11-MAY-19     |
| WG3047079-4<br>Sulfate (SO4)         |           |                                       | L2271564-2                   | 100.3    |           | %           |           | 75-125  | 11-MAY-19     |
|                                      |           |                                       |                              |          |           |             |           |         |               |

| Client:  | GHD Limited                |
|----------|----------------------------|
|          | # 400 - 179 Colonnade Road |
|          | Ottawa ON K2E 7J4          |
| Contact: | Airesse MacPhee            |

#### Legend:

| Limit    | ALS Control Limit (Data Quality Objectives) |
|----------|---------------------------------------------|
| DUP      | Duplicate                                   |
| RPD      | Relative Percent Difference                 |
| N/A      | Not Available                               |
| LCS      | Laboratory Control Sample                   |
| SRM      | Standard Reference Material                 |
| MS       | Matrix Spike                                |
| MSD      | Matrix Spike Duplicate                      |
| ADE      | Average Desorption Efficiency               |
| MB       | Method Blank                                |
| IRM      | Internal Reference Material                 |
| CRM      | Certified Reference Material                |
| CCV      | Continuing Calibration Verification         |
| CVS      | Calibration Verification Standard           |
| LCSD     | Laboratory Control Sample Duplicate         |
|          |                                             |
| Sample I | Parameter Qualifier Definitions:            |

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

Workorder: L2271564

Report Date: 30-MAY-19

Client: GHD Limited # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee

Page 12 of 12

#### Hold Time Exceedances:

|                         | Sample |                 |                 |         |           |       |           |
|-------------------------|--------|-----------------|-----------------|---------|-----------|-------|-----------|
| ALS Product Description | ID     | Sampling Date   | Date Processed  | Rec. HT | Actual HT | Units | Qualifier |
| Physical Tests          |        |                 |                 |         |           |       |           |
| pH by Meter (Automated) |        |                 |                 |         |           |       |           |
|                         | 1      | 08-MAY-19 09:45 | 15-MAY-19 07:59 | 0.25    | 166       | hours | EHTR-FM   |
|                         | 2      | 08-MAY-19 10:20 | 15-MAY-19 07:59 | 0.25    | 166       | hours | EHTR-FM   |
|                         | 3      | 08-MAY-19 10:50 | 15-MAY-19 07:59 | 0.25    | 165       | hours | EHTR-FM   |
|                         | 4      | 08-MAY-19 11:20 | 15-MAY-19 07:59 | 0.25    | 165       | hours | EHTR-FM   |
|                         | 5      | 08-MAY-19 11:55 | 15-MAY-19 07:59 | 0.25    | 164       | hours | EHTR-FM   |
|                         | 6      | 08-MAY-19 12:30 | 15-MAY-19 07:59 | 0.25    | 163       | hours | EHTR-FM   |
|                         | 7      | 08-MAY-19 12:45 | 15-MAY-19 07:59 | 0.25    | 163       | hours | EHTR-FM   |

#### Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

- EHT: Exceeded ALS recommended hold time prior to analysis.
- Rec. HT: ALS recommended hold time (see units).

Notes\*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2271564 were received on 10-MAY-19 18:16.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



Canada Toll Free: 1 800 668 9878

.



-

•...

|                  | www.aisgiopai.co       | <u>III</u>           |                   |                    |           |                                 |               |              | 1 X                   |                 | ur viscus biorre |                           |              |              | In the second state | -            |               | ŧ                |               |            |             |                 |             |                      |
|------------------|------------------------|----------------------|-------------------|--------------------|-----------|---------------------------------|---------------|--------------|-----------------------|-----------------|------------------|---------------------------|--------------|--------------|---------------------|--------------|---------------|------------------|---------------|------------|-------------|-----------------|-------------|----------------------|
| Report To        | Contact and com        | pany nar             | me below will ap  | ppear on the final | report    |                                 |               |              | / Distribution        |                 |                  | Select S                  | ervice Le    | evel Bel     | ow - Plea           | ise confi    | rm all Eð     | LP TATS          | with you      | ır AM - su | rcharges w  | ill apply       |             |                      |
| Company:         | GHD Limited            |                      |                   |                    |           | Select Report F                 | ormat:        | PDF [        | EXCEL DEDI            | ) (DIGITAL)     |                  |                           | Reg          | jular        |                     | Stand        | ard TA        | T if rece        | ived by       | 3 pm - b   | usiness da  | iys - no r      | surcharg    | es apply             |
| Contact:         | Airesse MacPhee        |                      |                   |                    |           | Quality Control                 | (QC) Rep      | port with Re | eport 🗹 YES           | D NO            |                  | کر<br>کنیک                | 4 d          | lay (P       | 4]                  |              |               | tc V             | 1 B           | usines     | s day [l    | E1]             |             |                      |
| Phone:           |                        |                      |                   |                    |           | Compare Result                  | s to Criteria | on Report -  | provide details belov | v if box chec   | ked              | PRIORITY<br>(Bushress Da) | 3 d          | lay [P       | 3]                  |              |               | RGE,             | Sa            | me Da      | y, Week     | end or          | •           |                      |
|                  | Company address belo   | ow wili ap           | ppear on the fina | nal report         |           | Select Distributi               | on: 🖸         | EMAIL        |                       | AX              |                  | PH<br>(sug)               | 2 d          | lay [P       | 2]                  |              |               | EMB              | S             | tatutor    | y holida    | iy [E0]         |             |                      |
| Street:          | 651 Colby Drive        |                      |                   |                    |           | Email 1 or Fax                  | airesse.      | macphee@     | 2ghd.com              |                 |                  | I                         | Date and     | d Time       | Require             | ed for a     | ll E&P        | TATs:            |               |            | dd-m        | ітт-уу          | hh:mr       | m –                  |
| City/Province:   | Waterloo, ON           |                      |                   |                    |           | Email 2                         | See PO        |              |                       |                 |                  | For test                  | s that car   | n not be     | perform             | ed accor     | ding to       | the servi        | ce level      | selected,  | you will be | contacté        | d.          |                      |
| Postal Code:     | N2V 1C2                |                      |                   |                    |           | Email 3                         |               |              |                       |                 |                  |                           |              |              |                     |              | 1             | Analys           | is Rec        | quest      |             |                 |             |                      |
| Invoice To       | Same as Report To      |                      | 🖸 YES             |                    |           |                                 | li            | nvoice Dis   | stribution            |                 |                  |                           | Indica       | ate Filte    | ered (F),           |              |               | or Filter        | ed and        | Preserve   | ed (F/P) be | wols            |             |                      |
|                  | Copy of Invoice with   | Report               | 🗹 YES             | D NO               |           | Select Invoice [                | istributio    | n: 🗹 EMA     |                       | ] FAX           |                  |                           | 9            |              |                     | , i          | <u> </u>      |                  |               |            |             |                 |             |                      |
| <br>0            |                        |                      |                   |                    |           | Email 1 or Fax                  |               |              |                       |                 |                  |                           |              |              |                     |              | ess           |                  |               |            |             |                 |             |                      |
| Contact:         |                        |                      |                   |                    |           | Email 2                         |               |              |                       |                 |                  |                           |              |              |                     |              | Hardr         |                  |               |            |             |                 |             | ε                    |
|                  | Projec                 | t Infor:             | mation            |                    |           | Oi                              | and Gas       | s Required   | d Fields (client      | use)            | _                |                           |              |              |                     |              |               |                  |               |            |             |                 |             | line                 |
| ALS Account #    | / Quote #:             | Q72                  | 562               |                    |           | AFE/Cost Center:                |               |              | PO#                   |                 |                  |                           |              | (EON         |                     |              | Sulfur,       |                  |               |            |             |                 |             | onts                 |
| Job #:           | 11179286- CVRD         |                      |                   |                    |           | Major/Minor Code:               |               |              | Routing Code:         |                 |                  |                           |              | Ž            |                     |              | 'ns'          |                  |               |            |             |                 |             | 0<br>5               |
| PO / AFE:        |                        |                      |                   |                    |           | Requisitioner:                  |               |              |                       |                 |                  | _                         |              | N02,         |                     |              | ohqa          |                  |               |            |             |                 |             | ы<br>Ба              |
| LSD:             | Tahsis (Phase 05) G    | W_                   |                   |                    |           | Location:                       |               |              |                       |                 |                  | atec                      |              | SQ4          |                     |              | Phosph        |                  |               |            |             |                 |             | Number of Containers |
|                  | rk Order # (lab use o  | alu)                 |                   |                    |           | ALS Contact:                    | Sola          | m            | Samalar M             | Duck            | -                | peci                      |              | S S          |                     |              | Б<br>Н        |                  |               |            |             |                 |             | z                    |
| ALS LAD WO       | k order # (lab use u   | nuy)                 |                   |                    |           | ALS CONTACT:                    | We            | Jer          | Sampler: M            | 3040            | 10               | s)<br>A                   | ia-N         | õ            |                     | ivity        | ) (w/         |                  |               |            |             |                 |             |                      |
| ALS Sample #     | · S                    | ample                | Identificatio     | on and/or Co       | ordinates |                                 |               | ate          | Time                  | Sample          |                  | alini                     | Ammonia-N    | Anions (Cl,  |                     | Conductivity | MET-DIS       |                  |               |            |             |                 |             |                      |
| (lab use only)   | (                      | This de              | escription will   | II appear on th    | e report) |                                 | (dd-m         | tmm-yy)      | (hh:mm)               | Jampie          | , i j þö         | ¥k                        | Am           | Ani          | F                   | Š            | ME            |                  |               |            |             |                 |             |                      |
|                  | WG-5648                | 4-0                  | 80519-            | -DB-O              | 1         |                                 | 08-           | MAY-19       |                       | W               | G                | X                         | $\gamma$     | $\mathbf{x}$ | X                   | X            | $\mathbf{x}$  |                  |               |            |             |                 |             | 4                    |
|                  |                        |                      |                   | -02                |           |                                 |               | 1            | 10:20                 | 1               | •                |                           |              |              | ,                   |              | 1             |                  |               |            |             |                 |             | 1                    |
| ·                |                        |                      |                   | -0                 |           |                                 |               |              | 10:50                 |                 |                  |                           |              |              |                     |              | Ī             |                  |               |            |             |                 |             | 1                    |
|                  |                        |                      |                   | -04                |           |                                 |               | 1            | 11:20                 | + +             |                  |                           |              |              |                     |              |               |                  |               |            |             |                 | -           | 1                    |
| -                | <u> </u>               |                      |                   | -05                |           |                                 |               | ╁╼───        | 11:55                 | ┼─╂             |                  | ┤╴┨┤                      | -++          | +            |                     |              |               |                  |               |            | +           | +               | -+          | []                   |
|                  |                        |                      | ·                 | -06                | -         | · · ·                           |               | <u> </u>     | 12:30                 | +               |                  |                           | -+-          | +            |                     |              |               | $\left  \right $ | $\rightarrow$ |            |             | -+              | <u> </u> +− |                      |
|                  |                        |                      |                   |                    |           |                                 |               | <u>.</u>     |                       | $+ \cdot \cdot$ | /                | L J                       |              | ᆛ            | J                   | $\checkmark$ | $\mathcal{A}$ |                  | $\rightarrow$ |            |             |                 |             | -                    |
|                  | 2                      |                      |                   | 07                 |           |                                 |               | <u>٢</u>     | 12:45                 | <u> </u>        |                  | v                         | V            | V            | ~                   | 3            | v             |                  |               |            |             |                 |             | • <u> </u>           |
|                  | -                      |                      |                   |                    |           |                                 |               |              |                       |                 |                  |                           |              |              |                     |              |               |                  |               |            |             |                 |             |                      |
|                  |                        |                      |                   |                    |           |                                 |               |              |                       |                 |                  |                           | [            |              |                     |              |               |                  |               |            |             |                 |             | _                    |
|                  |                        |                      |                   |                    |           |                                 |               |              |                       |                 |                  |                           |              |              |                     |              |               |                  |               |            |             |                 |             |                      |
| •••              |                        |                      |                   |                    |           |                                 |               |              |                       | +               |                  |                           |              |              |                     |              |               |                  |               | -          | +           |                 |             |                      |
|                  |                        |                      |                   |                    |           |                                 |               |              |                       |                 | -                |                           |              |              | -                   |              |               |                  |               |            | +           | -+              | +           |                      |
|                  |                        |                      |                   | Onesisting         |           |                                 | <br>          |              | Liss on the dree      | daum liat l     |                  |                           |              |              | SAME                |              | ותאר          |                  | SRE           | CENEL      | ) (lab us   |                 |             |                      |
| Drinking         | Water (DW) Samples     | s <sup>1</sup> (clie | nt use)           | -                  |           | ecify Criteria to a<br>(elec    | tronic CC     | C only)      |                       | dowinnstr       | below            | Froze                     | n            |              |                     |              |               |                  |               | ations     | Yes         | -               | No<br>No    |                      |
| Are samples take | en from a Regulated DV | V Syste              | m?                |                    | un ala    | $\overline{O}$ $\overline{A}$   | 2) - ( - 1)   | 011          | 1                     |                 |                  | Ice Pa                    |              |              |                     | ubes         |               | r                |               |            |             |                 | No          | ΗI                   |
| •                | s ⊡ NO                 | -                    |                   | 50                 | mpie      |                                 | ier de        | 79 (T        | eren                  |                 |                  |                           | vg Initia    | _            |                     | -            | <u> </u>      |                  | _,            |            | .03         |                 |             |                      |
| Are samples for  | human drinking water i | use?                 |                   |                    | prese     | 01 not A<br>erved.<br>nold +1 v |               |              |                       |                 |                  |                           | -            |              |                     | MPER/        |               | S °C             |               | FIN        | AL COOL     | ER TEN          | PERATI      | JRES °C              |
|                  | -                      |                      |                   | 1 51               | wat 1     | rold Hr                         | le S          |              |                       |                 | ,                |                           |              |              |                     |              |               | · · ·            |               | OY.        | ang         |                 | $\neg \top$ |                      |
|                  | SHIPMENT               | ELEAS                | SE (client use    | ie) / h            | n/ ici    |                                 | INITIAL       | SHIPMEN      | T RECEPTION           | (lab use or     | nly)             | l                         | <u>.</u><br> |              |                     | FI           | NAL Ş         | HIPME            | NT R          |            | ION (iat    | use o           | nly)        |                      |
| Released by      | mm                     | Date                 | · Ma              | 4 201              | Time:     | Received by:                    |               | ·            | Date:                 |                 | ••               | Time:                     |              | Rece         | ived by             |              | 21            |                  |               | Date:      | Ma          |                 | 0           | ime:<br>7150         |
| REFER TO BACK    | PAGE FOR ALS LOCA      | L<br>TIONS           |                   | ING INFORMAT       | 10N 70    | <u>r</u>                        | <u> </u>      | WHI          | TE - LABORATOR        | RY COPY         | YELI             | L<br>_OW - (              |              | COP          | <u> </u>            |              | 21/           |                  |               |            | v un        | <del>7_</del> 4 | <b></b> ,   | OCTOBER 2015 FRONT   |
|                  |                        |                      |                   |                    |           |                                 |               |              |                       |                 |                  |                           |              |              |                     |              |               |                  |               |            |             |                 |             |                      |

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

٠



#### GHD Field Sample Key (FSK)

| Sample Reason                                     |          | ahsis Q2 EMP                |                        |                       |               |                   |                        |                      |                  |             |                               |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |   |
|---------------------------------------------------|----------|-----------------------------|------------------------|-----------------------|---------------|-------------------|------------------------|----------------------|------------------|-------------|-------------------------------|-----------------------|-------------------|-----------------|----------|----------------|--------------|--------------------|-----------|-----------------|------------------|---------------------------|---------------------------|---|
|                                                   | Chris T  | horne, David Bot            | 070                    | -                     |               |                   |                        |                      |                  |             |                               |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |   |
| Sampler Name<br>Sampling Company<br>Laboratory(s) | China I  | GHD Ltd.                    | ero                    | SSOW Reference Code : |               |                   |                        |                      |                  |             |                               |                       |                   |                 |          |                |              |                    |           |                 |                  |                           |                           |   |
|                                                   |          | ALS                         |                        | -                     |               | 330W Kelei        | ence code .            |                      |                  | _           |                               | Temperature           |                   | pH              | Eh / ORP |                | Conductivity |                    | Turbidity |                 | DO               |                           | TDS                       |   |
| Laboratory(s)                                     |          | ALO                         |                        | -                     |               |                   |                        |                      |                  |             |                               | Temp                  | Juluic            | pii             | E117     |                | Conta        | lotivity           | Turk      | haity           |                  | •                         |                           |   |
| Sample ID                                         | Location | Sample Date<br>(mm/dd/yyyy) | Sample Time<br>(hh:mm) | Sample Type           | Sample Matrix | Grab or Composite | Start Depth<br>(m bgs) | End Depth<br>(m bgs) | Parent Sample (D | Footnote(s) | Volume of Water<br>Purged (L) | Sample<br>Temperature | Temperature Units | Field pH (s.u.) | Eh / ORP | Eh / ORP Units | Conductivity | Conductivity Units | Turbidity | Turbidity Units | Dissolved Oxygen | Dissolved Oxygen<br>Units | Total Dissolved<br>Solids |   |
| WG56484-271119-08                                 | PFP#4A   | 11/27/2019                  | 9:30                   | N                     | WG            | grab              |                        |                      |                  |             | 14                            | 8.92                  | с                 | 7.59            | 206      | mV             | 239          | uS/cm              | 14.7      | ntu             | -                | mg/L                      | 0.155                     | Т |
| WG56484-271119-09                                 | PFP#3A   | 11/27/2019                  | 10:30                  | Ν                     | WG            | grab              |                        |                      |                  |             | 21                            | 7.84                  | С                 | 7.36            | 226      | mV             | 410          | uS/cm              | 0         | ntu             | -                | mg/L                      | 0.267                     |   |
| WG56484-271119-10                                 | PFP#1A   | 11/27/2019                  | 11:00                  | Ν                     | WG            | grab              |                        |                      |                  |             | 220                           | 6.54                  | С                 | 7.82            | -51      | mV             | 301          | uS/cm              | 0         | ntu             | -                | mg/L                      | 0.196                     |   |
| WG56484-271119-11                                 | PFP#2A   | 11/27/2019                  | 11:40                  | Ν                     | WG            | grab              |                        |                      |                  |             | 35                            | 7.76                  | С                 | 7.07            | 58       | mV             | 491          | uS/cm              | 0         | ntu             | -                | mg/L                      | 0.319                     |   |
| WG56484-271119-12                                 | MW-2     | 11/27/2019                  | 12:05                  | Ν                     | WG            | grab              |                        |                      |                  |             | 48                            | 7.59                  | С                 | 7.77            | 80       | mV             | 264          | uS/cm              | 0         | ntu             | -                | mg/L                      | 0.172                     | T |
| WG56484-271119-13                                 | MW-1     | 11/27/2019                  | 12:40                  | Ν                     | WG            | grab              |                        |                      |                  |             | 52                            | 9.82                  | С                 | 7.61            | 111      | mV             | 274          | uS/cm              | 0         | ntu             | -                | mg/L                      | 0.178                     | T |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |
|                                                   |          |                             |                        |                       |               |                   |                        |                      |                  |             |                               |                       | С                 |                 |          | mV             |              | uS/cm              |           | ntu             |                  | mg/L                      |                           |   |





GHD Limited ATTN: Airesse MacPhee # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Date Received:28-NOV-19Report Date:06-DEC-19 19:16 (MT)Version:FINAL

Client Phone: 613-727-0510

# **Certificate of Analysis**

#### Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: **L2389505** 73515713-2 056484-54

Phase 54 - Tahsis GW

Selam Worku Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

L2389505 CONTD.... PAGE 2 of 12 Version: FINAL

## ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                    | Result     | Qualifier* | D.L.      | Units  | Extracted  | Analyzed    | Batch     |
|----------------------------------------------------------------------------------------------|------------|------------|-----------|--------|------------|-------------|-----------|
| L2389505-1 WG-56484-271119-CT-08<br>Sampled By: C. Thorne on 27-NOV-19 @ 09:30<br>Matrix: GW |            |            |           |        |            |             |           |
| Physical Tests                                                                               |            |            |           |        |            |             |           |
| Conductivity                                                                                 | 216        |            | 2.0       | uS/cm  |            | 30-NOV-19   | R4929176  |
| Hardness (as CaCO3), dissolved                                                               | 103        |            | 0.50      | mg/L   |            | 30-NOV-19   |           |
| рН                                                                                           | 8.18       |            | 0.10      | pН     |            | 30-NOV-19   | R4929176  |
| Anions and Nutrients                                                                         |            |            |           |        |            |             |           |
| Alkalinity, Bicarbonate (as CaCO3)                                                           | 115        |            | 1.0       | mg/L   |            | 30-NOV-19   | R4929176  |
| Alkalinity, Carbonate (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L   |            | 30-NOV-19   | R4929176  |
| Alkalinity, Hydroxide (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L   |            | 30-NOV-19   | R4929176  |
| Alkalinity, Total (as CaCO3)                                                                 | 115        |            | 1.0       | mg/L   |            | 30-NOV-19   | R4929176  |
| Ammonia, Total (as N)                                                                        | 0.0058     |            | 0.0050    | mg/L   |            | 30-NOV-19   | R4929363  |
| Chloride (Cl)                                                                                | 1.12       |            | 0.50      | mg/L   |            | 29-NOV-19   | R4930106  |
| Fluoride (F)                                                                                 | <0.020     |            | 0.020     | mg/L   |            | 29-NOV-19   | R4930106  |
| Nitrate and Nitrite (as N)                                                                   | 0.0615     |            | 0.0051    | mg/L   |            | 03-DEC-19   |           |
| Nitrate (as N)                                                                               | 0.0615     |            | 0.0050    | mg/L   |            | 29-NOV-19   | R4930106  |
| Nitrite (as N)                                                                               | <0.0010    |            | 0.0010    | mg/L   |            | 29-NOV-19   | R4930106  |
| Sulfate (SO4)                                                                                | 1.68       |            | 0.30      | mg/L   |            | 29-NOV-19   | R4930106  |
| Dissolved Metals                                                                             |            |            |           | -      |            |             |           |
| Dissolved Mercury Filtration Location                                                        | FIELD      |            |           |        |            | 30-NOV-19   | R4929172  |
| Dissolved Metals Filtration Location                                                         | FIELD      |            |           |        |            | 29-NOV-19   | R4928762  |
| Aluminum (AI)-Dissolved                                                                      | 0.0058     |            | 0.0010    | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Antimony (Sb)-Dissolved                                                                      | <0.00010   |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Arsenic (As)-Dissolved                                                                       | <0.00010   |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Barium (Ba)-Dissolved                                                                        | 0.00248    |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Beryllium (Be)-Dissolved                                                                     | <0.00010   |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Bismuth (Bi)-Dissolved                                                                       | <0.000050  |            | 0.000050  | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Boron (B)-Dissolved                                                                          | <0.010     |            | 0.010     | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Cadmium (Cd)-Dissolved                                                                       | <0.000050  |            | 0.0000050 | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Calcium (Ca)-Dissolved                                                                       | 36.0       |            | 0.050     | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Cesium (Cs)-Dissolved                                                                        | <0.000010  |            | 0.000010  | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Chromium (Cr)-Dissolved                                                                      | 0.00016    |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Cobalt (Co)-Dissolved                                                                        | <0.00010   |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   |           |
| Copper (Cu)-Dissolved                                                                        | 0.00066    |            | 0.00020   | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Iron (Fe)-Dissolved                                                                          | <0.010     |            | 0.010     | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Lead (Pb)-Dissolved                                                                          | <0.000050  |            | 0.000050  | mg/L   | 29-NOV-19  | 30-NOV-19   |           |
| Lithium (Li)-Dissolved                                                                       | <0.0010    |            | 0.0010    | mg/L   | 29-NOV-19  | 30-NOV-19   |           |
| Magnesium (Mg)-Dissolved                                                                     | 3.12       |            | 0.0050    | mg/L   | 29-NOV-19  |             | R4928947  |
| Manganese (Mn)-Dissolved                                                                     | 0.00089    |            | 0.00010   | mg/L   | 29-NOV-19  | 30-NOV-19   |           |
| Mercury (Hg)-Dissolved                                                                       | <0.0000050 |            | 0.0000050 | mg/L   | 30-NOV-19  | 01-DEC-19   | R4929433  |
| Molybdenum (Mo)-Dissolved                                                                    | 0.000091   |            | 0.000050  | mg/L   | 29-NOV-19  |             | R4928947  |
| Nickel (Ni)-Dissolved                                                                        | <0.00050   |            | 0.00050   | mg/L   | 29-NOV-19  | 30-NOV-19   |           |
| Phosphorus (P)-Dissolved                                                                     | <0.050     |            | 0.050     | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
| Potassium (K)-Dissolved                                                                      | 0.059      |            | 0.050     | mg/L   | 29-NOV-19  | 30-NOV-19   | R4928947  |
|                                                                                              | 0.059      |            | 0.000     | iiig/L | 23-1101-19 | 00-110 - 19 | 114920941 |

| Sample Details/Parameters                                                                    | Result    | Qualifier* | D.L.     | Units | Extracted | Analyzed  | Batch    |
|----------------------------------------------------------------------------------------------|-----------|------------|----------|-------|-----------|-----------|----------|
| L2389505-1 WG-56484-271119-CT-08<br>Sampled By: C. Thorne on 27-NOV-19 @ 09:30<br>Matrix: GW |           |            |          |       |           |           |          |
| Dissolved Metals                                                                             |           |            |          |       |           |           |          |
| Rubidium (Rb)-Dissolved                                                                      | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Selenium (Se)-Dissolved                                                                      | 0.000090  |            | 0.000050 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Silicon (Si)-Dissolved                                                                       | 1.28      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Silver (Ag)-Dissolved                                                                        | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Sodium (Na)-Dissolved                                                                        | 1.04      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Strontium (Sr)-Dissolved                                                                     | 0.0499    |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Sulfur (S)-Dissolved                                                                         | 0.84      |            | 0.50     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tellurium (Te)-Dissolved                                                                     | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thallium (TI)-Dissolved                                                                      | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thorium (Th)-Dissolved                                                                       | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tin (Sn)-Dissolved                                                                           | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Titanium (Ti)-Dissolved                                                                      | <0.00030  |            | 0.00030  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tungsten (W)-Dissolved                                                                       | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Uranium (U)-Dissolved                                                                        | 0.000170  |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Vanadium (V)-Dissolved                                                                       | <0.00050  |            | 0.00050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zinc (Zn)-Dissolved                                                                          | 0.0014    |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zirconium (Zr)-Dissolved                                                                     | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| L2389505-2 WG-56484-271119-CT-09<br>Sampled By: C. Thorne on 27-NOV-19 @ 10:30<br>Matrix: GW |           |            |          |       |           |           |          |
| Physical Tests                                                                               |           |            |          |       |           |           |          |
| Conductivity                                                                                 | 376       |            | 2.0      | uS/cm |           | 30-NOV-19 | R4929176 |
| Hardness (as CaCO3), dissolved                                                               | 191       |            | 0.50     | mg/L  |           | 30-NOV-19 |          |
| pH                                                                                           | 8.19      |            | 0.10     | pН    |           | 30-NOV-19 | R4929176 |
| Anions and Nutrients                                                                         |           |            |          |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                           | 217       |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Carbonate (as CaCO3)                                                             | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Hydroxide (as CaCO3)                                                             | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Total (as CaCO3)                                                                 | 217       |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Ammonia, Total (as N)                                                                        | <0.0050   |            | 0.0050   | mg/L  |           | 30-NOV-19 | R4929363 |
| Chloride (Cl)                                                                                | 1.64      |            | 0.50     | mg/L  |           | 29-NOV-19 | R4930106 |
| Fluoride (F)                                                                                 | <0.020    |            | 0.020    | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrate and Nitrite (as N)                                                                   | 0.240     |            | 0.0051   | mg/L  |           | 03-DEC-19 |          |
| Nitrate (as N)                                                                               | 0.240     |            | 0.0050   | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrite (as N)                                                                               | <0.0010   |            | 0.0010   | mg/L  |           | 29-NOV-19 | R4930106 |
| Sulfate (SO4)                                                                                | 2.53      |            | 0.30     | mg/L  |           | 29-NOV-19 | R4930106 |
| Dissolved Metals                                                                             |           |            |          |       |           |           |          |
| Dissolved Mercury Filtration Location                                                        | FIELD     |            |          |       |           | 30-NOV-19 | R4929172 |
| Dissolved Metals Filtration Location                                                         | FIELD     |            |          |       |           | 29-NOV-19 | R4928762 |
| Aluminum (AI)-Dissolved                                                                      | 0.0022    |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Antimony (Sb)-Dissolved                                                                      | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Arsenic (As)-Dissolved                                                                       | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |

| Sample Details/Parameters                                                                                                          | Result               | Qualifier* | D.L.               | Units        | Extracted              | Analyzed               | Batch                |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------------------|--------------|------------------------|------------------------|----------------------|
| L2389505-2 WG-56484-271119-CT-09<br>Sampled By: C. Thorne on 27-NOV-19 @ 10:30<br>Matrix: GW                                       |                      |            |                    |              |                        |                        |                      |
| Dissolved Metals                                                                                                                   |                      |            |                    |              |                        |                        |                      |
| Barium (Ba)-Dissolved                                                                                                              | 0.00293              |            | 0.00010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Beryllium (Be)-Dissolved                                                                                                           | <0.00010             |            | 0.00010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Bismuth (Bi)-Dissolved                                                                                                             | <0.000050            |            | 0.000050           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Boron (B)-Dissolved                                                                                                                | <0.010               |            | 0.010              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cadmium (Cd)-Dissolved                                                                                                             | <0.000050            |            | 0.0000050          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Calcium (Ca)-Dissolved                                                                                                             | 69.7                 |            | 0.050              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cesium (Cs)-Dissolved                                                                                                              | <0.000010            |            | 0.000010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Chromium (Cr)-Dissolved                                                                                                            | 0.00019              |            | 0.00010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cobalt (Co)-Dissolved                                                                                                              | <0.00010             |            | 0.00010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Copper (Cu)-Dissolved                                                                                                              | 0.00049              |            | 0.00020            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Iron (Fe)-Dissolved                                                                                                                | <0.010               |            | 0.010              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Lead (Pb)-Dissolved                                                                                                                | <0.000050            |            | 0.000050           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Lithium (Li)-Dissolved                                                                                                             | <0.0010              |            | 0.0010             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Magnesium (Mg)-Dissolved                                                                                                           | 4.01                 |            | 0.0050             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Manganese (Mn)-Dissolved                                                                                                           | <0.00010             |            | 0.00010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Mercury (Hg)-Dissolved                                                                                                             | <0.000050            |            | 0.0000050          | mg/L         | 30-NOV-19              | 01-DEC-19              | R4929433             |
| Molybdenum (Mo)-Dissolved                                                                                                          | 0.000089             |            | 0.000050           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Nickel (Ni)-Dissolved                                                                                                              | <0.00050             |            | 0.00050            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Phosphorus (P)-Dissolved                                                                                                           | <0.050               |            | 0.050              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Potassium (K)-Dissolved                                                                                                            | 0.164                |            | 0.050              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Rubidium (Rb)-Dissolved                                                                                                            | <0.00020             |            | 0.00020            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Selenium (Se)-Dissolved                                                                                                            | 0.000083             |            | 0.000050           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Silicon (Si)-Dissolved                                                                                                             | 1.87                 |            | 0.050              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Silver (Ag)-Dissolved                                                                                                              | <0.000010            |            | 0.000010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Sodium (Na)-Dissolved                                                                                                              | 1.23                 |            | 0.050              | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Strontium (Sr)-Dissolved                                                                                                           | 0.0827               |            | 0.00020            | mg/L         | 29-NOV-19              | 30-NOV-19              |                      |
| Sulfur (S)-Dissolved                                                                                                               | 1.02                 |            | 0.50               | mg/L         | 29-NOV-19              | 30-NOV-19              |                      |
| Tellurium (Te)-Dissolved                                                                                                           | <0.00020             |            | 0.00020            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Thallium (TI)-Dissolved                                                                                                            | <0.000010            |            | 0.000010           | mg/L         | 29-NOV-19<br>29-NOV-19 | 30-NOV-19<br>30-NOV-19 | R4928947             |
| Thorium (Th)-Dissolved<br>Tin (Sn)-Dissolved                                                                                       | <0.00010             |            | 0.00010            | mg/L         | 29-NOV-19<br>29-NOV-19 |                        | R4928947             |
| Titanium (Ti)-Dissolved                                                                                                            | <0.00010<br><0.00030 |            | 0.00010<br>0.00030 | mg/L<br>mg/L | 29-NOV-19<br>29-NOV-19 | 30-NOV-19<br>30-NOV-19 | R4928947<br>R4928947 |
| Tungsten (W)-Dissolved                                                                                                             | <0.00030             |            | 0.00030            | mg/L         | 29-NOV-19<br>29-NOV-19 |                        | R4928947<br>R4928947 |
| Uranium (U)-Dissolved                                                                                                              | 0.000333             |            | 0.00010            | mg/L         | 29-NOV-19<br>29-NOV-19 | 30-NOV-19              | R4928947<br>R4928947 |
| Vanadium (V)-Dissolved                                                                                                             | <0.000333            |            | 0.000010           | mg/L         | 29-NOV-19<br>29-NOV-19 | 30-NOV-19<br>30-NOV-19 | R4928947<br>R4928947 |
| Zinc (Zn)-Dissolved                                                                                                                | <0.00050             |            | 0.00050            | mg/L         | 29-NOV-19<br>29-NOV-19 |                        | R4928947             |
| Zirconium (Zr)-Dissolved                                                                                                           | <0.00020             |            | 0.00020            | mg/L         | 29-NOV-19              |                        | R4928947             |
| L2389505-3         WG-56484-271119-CT-10           Sampled By:         C. Thorne on 27-NOV-19 @ 11:00           Matrix:         GW | ~0.00020             |            | 0.00020            |              | 20110113               |                        | 114020041            |
| Physical Tests                                                                                                                     |                      |            |                    |              |                        |                        |                      |
| Conductivity                                                                                                                       | 269                  |            | 2.0                | uS/cm        |                        | 30-NOV-19              | R4929176             |

| Sample Details/Parameters                                                                    | Result     | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|----------------------------------------------------------------------------------------------|------------|------------|-----------|-------|-----------|-----------|----------|
| L2389505-3 WG-56484-271119-CT-10<br>Sampled By: C. Thorne on 27-NOV-19 @ 11:00<br>Matrix: GW |            |            |           |       |           |           |          |
| Physical Tests                                                                               |            |            |           |       |           |           |          |
| Hardness (as CaCO3), dissolved                                                               | 100        |            | 0.50      | mg/L  |           | 30-NOV-19 |          |
| pH                                                                                           | 8.23       |            | 0.10      | pН    |           | 30-NOV-19 | R4929176 |
| Anions and Nutrients                                                                         |            |            |           |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                           | 141        |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Carbonate (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Hydroxide (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Total (as CaCO3)                                                                 | 141        |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Ammonia, Total (as N)                                                                        | 3.45       |            | 0.13      | mg/L  |           | 30-NOV-19 | R4929363 |
| Chloride (Cl)                                                                                | 1.36       |            | 0.50      | mg/L  |           | 29-NOV-19 | R4930106 |
| Fluoride (F)                                                                                 | 0.305      |            | 0.020     | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrate and Nitrite (as N)                                                                   | <0.0051    |            | 0.0051    | mg/L  |           | 03-DEC-19 |          |
| Nitrate (as N)                                                                               | <0.0050    |            | 0.0050    | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrite (as N)                                                                               | <0.0010    |            | 0.0010    | mg/L  |           | 29-NOV-19 | R4930106 |
| Sulfate (SO4)                                                                                | 3.57       |            | 0.30      | mg/L  |           | 29-NOV-19 | R4930106 |
| Dissolved Metals                                                                             |            |            |           |       |           |           |          |
| Dissolved Mercury Filtration Location                                                        | FIELD      |            |           |       |           | 30-NOV-19 | R4929172 |
| Dissolved Metals Filtration Location                                                         | FIELD      |            |           |       |           | 29-NOV-19 | R4928762 |
| Aluminum (Al)-Dissolved                                                                      | 0.0021     |            | 0.0010    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Antimony (Sb)-Dissolved                                                                      | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Arsenic (As)-Dissolved                                                                       | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Barium (Ba)-Dissolved                                                                        | 0.00016    |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Beryllium (Be)-Dissolved                                                                     | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Bismuth (Bi)-Dissolved                                                                       | <0.000050  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Boron (B)-Dissolved                                                                          | 0.310      |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cadmium (Cd)-Dissolved                                                                       | <0.000050  |            | 0.0000050 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Calcium (Ca)-Dissolved                                                                       | 19.9       |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cesium (Cs)-Dissolved                                                                        | 0.000033   |            | 0.000010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Chromium (Cr)-Dissolved                                                                      | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cobalt (Co)-Dissolved                                                                        | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Copper (Cu)-Dissolved                                                                        | <0.00020   |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Iron (Fe)-Dissolved                                                                          | 0.056      |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lead (Pb)-Dissolved                                                                          | <0.000050  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lithium (Li)-Dissolved                                                                       | 0.0038     |            | 0.0010    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Magnesium (Mg)-Dissolved                                                                     | 12.2       |            | 0.0050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Manganese (Mn)-Dissolved                                                                     | 0.00752    |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Mercury (Hg)-Dissolved                                                                       | <0.0000050 |            | 0.0000050 | mg/L  | 30-NOV-19 | 01-DEC-19 | R4929433 |
| Molybdenum (Mo)-Dissolved                                                                    | <0.000050  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Nickel (Ni)-Dissolved                                                                        | <0.00050   |            | 0.00050   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Phosphorus (P)-Dissolved                                                                     | 0.661      |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Potassium (K)-Dissolved                                                                      | 4.76       |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Rubidium (Rb)-Dissolved                                                                      | 0.00187    |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
|                                                                                              |            |            |           | -     |           |           |          |
| * Refer to Referenced Information for Qualifiers (if any) a                                  |            |            |           |       |           |           |          |

| Sample Details                       | s/Parameters                                                  | Result    | Qualifier* | D.L.     | Units | Extracted | Analyzed  | Batch    |
|--------------------------------------|---------------------------------------------------------------|-----------|------------|----------|-------|-----------|-----------|----------|
| L2389505-3<br>Sampled By:<br>Matrix: | WG-56484-271119-CT-10<br>C. Thorne on 27-NOV-19 @ 11:00<br>GW |           |            |          |       |           |           |          |
| Dissolved M                          | Metals                                                        |           |            |          |       |           |           |          |
| Selenium (S                          | Se)-Dissolved                                                 | 0.000155  |            | 0.000050 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Silicon (Si)-                        | Dissolved                                                     | 10.5      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Silver (Ag)-                         | Dissolved                                                     | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
|                                      | a)-Dissolved                                                  | 10.0      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Strontium (                          | Sr)-Dissolved                                                 | 0.129     |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Sulfur (S)-D                         | Dissolved                                                     | 2.19      |            | 0.50     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tellurium (1                         | Te)-Dissolved                                                 | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thallium (T                          | I)-Dissolved                                                  | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thorium (T                           | h)-Dissolved                                                  | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tin (Sn)-Dis                         | ssolved                                                       | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Titanium (T                          | ï)-Dissolved                                                  | <0.00030  |            | 0.00030  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tungsten (\                          | W)-Dissolved                                                  | 0.00010   |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Uranium (U                           | I)-Dissolved                                                  | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Vanadium (                           | (V)-Dissolved                                                 | <0.00050  |            | 0.00050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zinc (Zn)-D                          | issolved                                                      | <0.0010   |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zirconium (                          | Zr)-Dissolved                                                 | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| _2389505-4<br>Sampled By:<br>Matrix: | WG-56484-271119-CT-11<br>C. Thorne on 27-NOV-19 @ 11:40<br>GW |           |            |          |       |           |           |          |
| Physical Te                          | ests                                                          |           |            |          |       |           |           |          |
| Conductivit                          | у                                                             | 447       |            | 2.0      | uS/cm |           | 30-NOV-19 | R4929176 |
| Hardness (a                          | as CaCO3), dissolved                                          | 233       |            | 0.50     | mg/L  |           | 30-NOV-19 |          |
| pН                                   |                                                               | 7.94      |            | 0.10     | pН    |           | 30-NOV-19 | R492917  |
| Anions and                           |                                                               |           |            |          |       |           |           |          |
|                                      | Bicarbonate (as CaCO3)                                        | 273       |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, C                        | Carbonate (as CaCO3)                                          | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
|                                      | lydroxide (as CaCO3)                                          | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
|                                      | otal (as CaCO3)                                               | 273       |            | 1.0      | mg/L  |           | 30-NOV-19 | R492917  |
|                                      | Total (as N)                                                  | <0.0050   |            | 0.0050   | mg/L  |           | 30-NOV-19 | R4929363 |
| Chloride (C                          | ,                                                             | 1.47      |            | 0.50     | mg/L  |           | 29-NOV-19 | R4930106 |
| Fluoride (F)                         |                                                               | <0.020    |            | 0.020    | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrate and                          | Nitrite (as N)                                                | 0.348     |            | 0.0051   | mg/L  |           | 03-DEC-19 |          |
| Nitrate (as                          | ,                                                             | 0.348     |            | 0.0050   | mg/L  |           | 29-NOV-19 |          |
| Nitrite (as N                        | ,                                                             | <0.0010   |            | 0.0010   | mg/L  |           | 29-NOV-19 |          |
| Sulfate (SC                          |                                                               | 1.74      |            | 0.30     | mg/L  |           | 29-NOV-19 | R4930106 |
|                                      |                                                               |           |            |          |       |           |           |          |
|                                      | Mercury Filtration Location                                   | FIELD     |            |          |       |           | 30-NOV-19 | R4929172 |
|                                      | Metals Filtration Location                                    | FIELD     |            | 0.001    |       |           | 29-NOV-19 |          |
|                                      | (AI)-Dissolved                                                | 0.0019    |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 |          |
|                                      | Sb)-Dissolved                                                 | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| · ·                                  | s)-Dissolved                                                  | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 |          |
| Barium (Ba                           | )-Dissolved                                                   | 0.00314   |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |

| Sample Details/Parameters                                                                                                          | Result              | Qualifier* | D.L.              | Units        | Extracted              | Analyzed               | Batch                |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------------|--------------|------------------------|------------------------|----------------------|
| L2389505-4 WG-56484-271119-CT-11<br>Sampled By: C. Thorne on 27-NOV-19 @ 11:40<br>Matrix: GW                                       |                     |            |                   |              |                        |                        |                      |
| Dissolved Metals                                                                                                                   |                     |            |                   |              |                        |                        |                      |
| Beryllium (Be)-Dissolved                                                                                                           | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Bismuth (Bi)-Dissolved                                                                                                             | <0.000050           |            | 0.000050          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Boron (B)-Dissolved                                                                                                                | 0.014               |            | 0.010             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cadmium (Cd)-Dissolved                                                                                                             | <0.000050           |            | 0.0000050         | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Calcium (Ca)-Dissolved                                                                                                             | 84.4                |            | 0.050             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cesium (Cs)-Dissolved                                                                                                              | 0.000017            |            | 0.000010          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Chromium (Cr)-Dissolved                                                                                                            | 0.00018             |            | 0.00010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Cobalt (Co)-Dissolved                                                                                                              | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Copper (Cu)-Dissolved                                                                                                              | 0.00041             |            | 0.00020           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Iron (Fe)-Dissolved                                                                                                                | <0.010              |            | 0.010             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Lead (Pb)-Dissolved                                                                                                                | <0.000050           |            | 0.000050          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Lithium (Li)-Dissolved                                                                                                             | <0.0010             |            | 0.0010            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Magnesium (Mg)-Dissolved                                                                                                           | 5.44                |            | 0.0050            | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Manganese (Mn)-Dissolved                                                                                                           | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Mercury (Hg)-Dissolved                                                                                                             | <0.000050           |            | 0.0000050         | mg/L         | 30-NOV-19              | 01-DEC-19              | R4929433             |
| Molybdenum (Mo)-Dissolved                                                                                                          | 0.000082            |            | 0.000050          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Nickel (Ni)-Dissolved                                                                                                              | <0.00050            |            | 0.00050           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Phosphorus (P)-Dissolved                                                                                                           | <0.050              |            | 0.050             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Potassium (K)-Dissolved                                                                                                            | 0.522               |            | 0.050             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Rubidium (Rb)-Dissolved                                                                                                            | 0.00021             |            | 0.00020           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Selenium (Se)-Dissolved                                                                                                            | 0.000072            |            | 0.000050          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Silicon (Si)-Dissolved                                                                                                             | 2.38                |            | 0.050             | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Silver (Ag)-Dissolved                                                                                                              | <0.000010           |            | 0.000010          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Sodium (Na)-Dissolved                                                                                                              | 1.47                |            | 0.050             | mg/L         | 29-NOV-19              |                        | R4928947             |
| Strontium (Sr)-Dissolved                                                                                                           | 0.102               |            | 0.00020           | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Sulfur (S)-Dissolved                                                                                                               | 0.82                |            | 0.50              | mg/L         | 29-NOV-19              | 30-NOV-19              |                      |
| Tellurium (Te)-Dissolved                                                                                                           | <0.00020            |            | 0.00020           | mg/L         | 29-NOV-19              | 30-NOV-19              |                      |
| Thallium (TI)-Dissolved                                                                                                            | <0.000010           |            | 0.000010          | mg/L         | 29-NOV-19              | 30-NOV-19              | R4928947             |
| Thorium (Th)-Dissolved                                                                                                             | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              |                        | R4928947             |
| Tin (Sn)-Dissolved                                                                                                                 | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              |                        | R4928947             |
| Titanium (Ti)-Dissolved                                                                                                            | <0.00030            |            | 0.00030           | mg/L         | 29-NOV-19              |                        | R4928947             |
| Tungsten (W)-Dissolved                                                                                                             | <0.00010            |            | 0.00010           | mg/L         | 29-NOV-19              |                        | R4928947             |
| Uranium (U)-Dissolved                                                                                                              | 0.000348            |            | 0.000010          | mg/L         | 29-NOV-19              |                        | R4928947             |
| Vanadium (V)-Dissolved<br>Zinc (Zn)-Dissolved                                                                                      | <0.00050            |            | 0.00050           | mg/L         | 29-NOV-19              | 30-NOV-19<br>30-NOV-19 | R4928947             |
| Zinc (Zn)-Dissolved<br>Zirconium (Zr)-Dissolved                                                                                    | <0.0010<br><0.00020 |            | 0.0010<br>0.00020 | mg/L<br>mg/L | 29-NOV-19<br>29-NOV-19 |                        | R4928947<br>R4928947 |
| L2389505-5         WG-56484-271119-CT-12           Sampled By:         C. Thorne on 27-NOV-19 @ 12:05           Matrix:         GW | ~0.00020            |            | 0.00020           | iiig/£       | 201101-13              | 00 100 - 13            | 117320341            |
| Physical Tests                                                                                                                     |                     |            |                   |              |                        |                        |                      |
| Conductivity                                                                                                                       | 240                 |            | 2.0               | uS/cm        |                        | 30-NOV-19              | R4929176             |
| Hardness (as CaCO3), dissolved                                                                                                     | 117                 |            | 0.50              | mg/L         |                        | 30-NOV-19              |                      |

### ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                    | Result     | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|----------------------------------------------------------------------------------------------|------------|------------|-----------|-------|-----------|-----------|----------|
| L2389505-5 WG-56484-271119-CT-12<br>Sampled By: C. Thorne on 27-NOV-19 @ 12:05<br>Matrix: GW |            |            |           |       |           |           |          |
| Physical Tests                                                                               |            |            |           |       |           |           |          |
| рН                                                                                           | 8.22       |            | 0.10      | pН    |           | 30-NOV-19 | R4929176 |
| Anions and Nutrients                                                                         |            |            |           |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                           | 125        |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Carbonate (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Hydroxide (as CaCO3)                                                             | <1.0       |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Total (as CaCO3)                                                                 | 125        |            | 1.0       | mg/L  |           | 30-NOV-19 | R4929176 |
| Ammonia, Total (as N)                                                                        | <0.0050    |            | 0.0050    | mg/L  |           | 30-NOV-19 | R4929363 |
| Chloride (Cl)                                                                                | 2.38       |            | 0.50      | mg/L  |           | 29-NOV-19 | R4930106 |
| Fluoride (F)                                                                                 | <0.020     |            | 0.020     | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrate and Nitrite (as N)                                                                   | 0.346      |            | 0.0051    | mg/L  |           | 03-DEC-19 |          |
| Nitrate (as N)                                                                               | 0.346      |            | 0.0050    | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrite (as N)                                                                               | <0.0010    |            | 0.0010    | mg/L  |           | 29-NOV-19 | R4930106 |
| Sulfate (SO4)                                                                                | 3.20       |            | 0.30      | mg/L  |           | 29-NOV-19 | R4930106 |
| Dissolved Metals                                                                             |            |            |           |       |           |           |          |
| Dissolved Mercury Filtration Location                                                        | FIELD      |            |           |       |           | 30-NOV-19 | R4929172 |
| Dissolved Metals Filtration Location                                                         | FIELD      |            |           |       |           | 29-NOV-19 | R4928762 |
| Aluminum (Al)-Dissolved                                                                      | 0.0075     |            | 0.0010    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Antimony (Sb)-Dissolved                                                                      | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Arsenic (As)-Dissolved                                                                       | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Barium (Ba)-Dissolved                                                                        | 0.00458    |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Beryllium (Be)-Dissolved                                                                     | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Bismuth (Bi)-Dissolved                                                                       | <0.000050  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Boron (B)-Dissolved                                                                          | 0.022      |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cadmium (Cd)-Dissolved                                                                       | <0.000050  |            | 0.0000050 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Calcium (Ca)-Dissolved                                                                       | 42.5       |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cesium (Cs)-Dissolved                                                                        | <0.000010  |            | 0.000010  | mg/L  | 29-NOV-19 |           | R4928947 |
| Chromium (Cr)-Dissolved                                                                      | 0.00010    |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cobalt (Co)-Dissolved                                                                        | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Copper (Cu)-Dissolved                                                                        | 0.00087    |            | 0.00020   | mg/L  | 29-NOV-19 |           | R4928947 |
| Iron (Fe)-Dissolved                                                                          | <0.010     |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lead (Pb)-Dissolved                                                                          | <0.000050  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lithium (Li)-Dissolved                                                                       | <0.0010    |            | 0.0010    | mg/L  | 29-NOV-19 |           | R4928947 |
| Magnesium (Mg)-Dissolved                                                                     | 2.72       |            | 0.0050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Manganese (Mn)-Dissolved                                                                     | <0.00010   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Mercury (Hg)-Dissolved                                                                       | <0.0000050 |            | 0.0000050 | mg/L  | 30-NOV-19 |           | R4929433 |
| Molybdenum (Mo)-Dissolved                                                                    | 0.000171   |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Nickel (Ni)-Dissolved                                                                        | <0.00050   |            | 0.00050   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Phosphorus (P)-Dissolved                                                                     | <0.050     |            | 0.050     | mg/L  | 29-NOV-19 |           | R4928947 |
| Potassium (K)-Dissolved                                                                      | 0.151      |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Rubidium (Rb)-Dissolved                                                                      | <0.00020   |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Selenium (Se)-Dissolved                                                                      | 0.000095   | 1          | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

### ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                                                                          | Result    | Qualifier* | D.L.     | Units | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------|-------|-----------|-----------|----------|
| L2389505-5 WG-56484-271119-CT-12<br>Sampled By: C. Thorne on 27-NOV-19 @ 12:05<br>Matrix: GW                                       |           |            |          |       |           |           |          |
| Dissolved Metals                                                                                                                   |           |            |          |       |           |           |          |
| Silicon (Si)-Dissolved                                                                                                             | 1.00      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Silver (Ag)-Dissolved                                                                                                              | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Sodium (Na)-Dissolved                                                                                                              | 1.63      |            | 0.050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Strontium (Sr)-Dissolved                                                                                                           | 0.0647    |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Sulfur (S)-Dissolved                                                                                                               | 1.33      |            | 0.50     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tellurium (Te)-Dissolved                                                                                                           | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thallium (TI)-Dissolved                                                                                                            | <0.000010 |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Thorium (Th)-Dissolved                                                                                                             | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tin (Sn)-Dissolved                                                                                                                 | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Titanium (Ti)-Dissolved                                                                                                            | <0.00030  |            | 0.00030  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Tungsten (W)-Dissolved                                                                                                             | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Uranium (U)-Dissolved                                                                                                              | 0.000276  |            | 0.000010 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Vanadium (V)-Dissolved                                                                                                             | <0.00050  |            | 0.00050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zinc (Zn)-Dissolved                                                                                                                | 0.0046    |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Zirconium (Zr)-Dissolved                                                                                                           | <0.00020  |            | 0.00020  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| L2389505-6         WG-56484-271119-CT-13           Sampled By:         C. Thorne on 27-NOV-19 @ 12:40           Matrix:         GW |           |            |          |       |           |           |          |
| Physical Tests                                                                                                                     |           |            |          |       |           |           |          |
| Conductivity                                                                                                                       | 252       |            | 2.0      | uS/cm |           | 30-NOV-19 | R4929176 |
| Hardness (as CaCO3), dissolved                                                                                                     | 123       |            | 0.50     | mg/L  |           | 30-NOV-19 |          |
| рН                                                                                                                                 | 8.18      |            | 0.10     | pН    |           | 30-NOV-19 | R4929176 |
| Anions and Nutrients                                                                                                               |           |            |          |       |           |           |          |
| Alkalinity, Bicarbonate (as CaCO3)                                                                                                 | 142       |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Carbonate (as CaCO3)                                                                                                   | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Hydroxide (as CaCO3)                                                                                                   | <1.0      |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Alkalinity, Total (as CaCO3)                                                                                                       | 142       |            | 1.0      | mg/L  |           | 30-NOV-19 | R4929176 |
| Ammonia, Total (as N)                                                                                                              | <0.0050   |            | 0.0050   | mg/L  |           | 30-NOV-19 | R4929363 |
| Chloride (Cl)                                                                                                                      | 1.27      |            | 0.50     | mg/L  |           | 29-NOV-19 | R4930106 |
| Fluoride (F)                                                                                                                       | <0.020    |            | 0.020    | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrate and Nitrite (as N)                                                                                                         | 0.160     |            | 0.0051   | mg/L  |           | 03-DEC-19 |          |
| Nitrate (as N)                                                                                                                     | 0.160     |            | 0.0050   | mg/L  |           | 29-NOV-19 | R4930106 |
| Nitrite (as N)                                                                                                                     | <0.0010   |            | 0.0010   | mg/L  |           | 29-NOV-19 | R4930106 |
| Sulfate (SO4)                                                                                                                      | 1.93      |            | 0.30     | mg/L  |           | 29-NOV-19 | R4930106 |
| Dissolved Metals                                                                                                                   |           |            |          |       |           |           |          |
| Dissolved Mercury Filtration Location                                                                                              | FIELD     |            |          |       |           | 30-NOV-19 | R4929172 |
| Dissolved Metals Filtration Location                                                                                               | FIELD     |            |          |       |           | 29-NOV-19 | R4928762 |
| Aluminum (Al)-Dissolved                                                                                                            | 0.0018    |            | 0.0010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Antimony (Sb)-Dissolved                                                                                                            | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Arsenic (As)-Dissolved                                                                                                             | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Barium (Ba)-Dissolved                                                                                                              | 0.00189   |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Beryllium (Be)-Dissolved                                                                                                           | <0.00010  |            | 0.00010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

### ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details                       | s/Parameters                                                  | Result    | Qualifier* | D.L.      | Units | Extracted | Analyzed  | Batch    |
|--------------------------------------|---------------------------------------------------------------|-----------|------------|-----------|-------|-----------|-----------|----------|
| L2389505-6<br>Sampled By:<br>Matrix: | WG-56484-271119-CT-13<br>C. Thorne on 27-NOV-19 @ 12:40<br>GW |           |            |           |       |           |           |          |
| Dissolved N                          | -                                                             |           |            |           |       |           |           |          |
| Bismuth (Bi                          |                                                               | <0.000050 |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Boron (B)-D                          | ,<br>Dissolved                                                | <0.010    |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cadmium (C                           | Cd)-Dissolved                                                 | <0.000050 |            | 0.0000050 | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Calcium (Ca                          | a)-Dissolved                                                  | 43.7      |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cesium (Cs                           | )-Dissolved                                                   | <0.000010 |            | 0.000010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Chromium (                           | (Cr)-Dissolved                                                | 0.00013   |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Cobalt (Co)-                         | -Dissolved                                                    | <0.00010  |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Copper (Cu)                          | )-Dissolved                                                   | 0.00039   |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Iron (Fe)-Dis                        | ssolved                                                       | <0.010    |            | 0.010     | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lead (Pb)-D                          | Dissolved                                                     | <0.000050 |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Lithium (Li)-                        | Dissolved                                                     | <0.0010   |            | 0.0010    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Magnesium                            | (Mg)-Dissolved                                                | 3.42      |            | 0.0050    | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Manganese                            | (Mn)-Dissolved                                                | <0.00010  |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
| Mercury (Hg                          | g)-Dissolved                                                  | <0.000050 |            | 0.0000050 | mg/L  | 30-NOV-19 | 01-DEC-19 | R492943  |
| Molybdenun                           | n (Mo)-Dissolved                                              | <0.000050 |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Nickel (Ni)-E                        | Dissolved                                                     | <0.00050  |            | 0.00050   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Phosphorus                           | s (P)-Dissolved                                               | <0.050    |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Potassium (                          | (K)-Dissolved                                                 | 0.126     |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Rubidium (F                          | Rb)-Dissolved                                                 | <0.00020  |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Selenium (S                          | Se)-Dissolved                                                 | 0.000082  |            | 0.000050  | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Silicon (Si)-I                       | Dissolved                                                     | 1.26      |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Silver (Ag)-[                        | Dissolved                                                     | <0.000010 |            | 0.000010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Sodium (Na                           | a)-Dissolved                                                  | 1.15      |            | 0.050     | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Strontium (S                         | Sr)-Dissolved                                                 | 0.0492    |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Sulfur (S)-D                         | lissolved                                                     | 0.91      |            | 0.50      | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
|                                      | e)-Dissolved                                                  | <0.00020  |            | 0.00020   | mg/L  | 29-NOV-19 |           | R492894  |
| Thallium (TI                         | l)-Dissolved                                                  | <0.000010 |            | 0.000010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Thorium (Th                          | n)-Dissolved                                                  | <0.00010  |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Tin (Sn)-Dis                         | ssolved                                                       | <0.00010  |            | 0.00010   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Titanium (Ti                         | ,                                                             | <0.00030  |            | 0.00030   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| 0 (                                  | V)-Dissolved                                                  | <0.00010  |            | 0.00010   | mg/L  | 29-NOV-19 |           | R492894  |
| Uranium (U)                          | )-Dissolved                                                   | 0.000106  |            | 0.000010  | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| · ·                                  | V)-Dissolved                                                  | <0.00050  |            | 0.00050   | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Zinc (Zn)-Di                         |                                                               | <0.0010   |            | 0.0010    | mg/L  | 29-NOV-19 | 30-NOV-19 | R492894  |
| Zirconium (2                         | Zr)-Dissolved                                                 | <0.00020  |            | 0.00020   | mg/L  | 29-NOV-19 | 30-NOV-19 | R4928947 |
|                                      |                                                               |           |            |           |       |           |           |          |
|                                      |                                                               |           |            |           |       |           |           |          |
|                                      |                                                               |           |            |           |       |           |           |          |

#### **Reference Information**

|                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier                                                                                                                                                                        | Applies to Sample Number(s)                                                                                                                                                                                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Matrix Spike                                                                                                                                                                                                                                                                               |                                                                                                                                                             | Calcium (Ca)-Dissolved                                                                                                                                                                                                                                                                                                                                                                                                          | MS-B                                                                                                                                                                             | L2389505-1, -2, -3, -4, -5, -6                                                                                                                                                                                                              |  |  |  |  |  |
| Matrix Spike                                                                                                                                                                                                                                                                               |                                                                                                                                                             | Magnesium (Mg)-Dissolved                                                                                                                                                                                                                                                                                                                                                                                                        | MS-B                                                                                                                                                                             | L2389505-1, -2, -3, -4, -5, -6                                                                                                                                                                                                              |  |  |  |  |  |
| Matrix Spike                                                                                                                                                                                                                                                                               |                                                                                                                                                             | Strontium (Sr)-Dissolved                                                                                                                                                                                                                                                                                                                                                                                                        | MS-B                                                                                                                                                                             | L2389505-1, -2, -3, -4, -5, -6                                                                                                                                                                                                              |  |  |  |  |  |
| Sample Parameter Qu                                                                                                                                                                                                                                                                        | alifier key                                                                                                                                                 | listed:                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                                             |  |  |  |  |  |
| Qualifier Descrip                                                                                                                                                                                                                                                                          | otion                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                                                                                             |  |  |  |  |  |
| MS-B Matrix S                                                                                                                                                                                                                                                                              | Spike recove                                                                                                                                                | ry could not be accurately calculated d                                                                                                                                                                                                                                                                                                                                                                                         | ue to high analyte                                                                                                                                                               | background in sample.                                                                                                                                                                                                                       |  |  |  |  |  |
| est Method Referenc                                                                                                                                                                                                                                                                        | es:                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                                                                                             |  |  |  |  |  |
| ALS Test Code                                                                                                                                                                                                                                                                              | Matrix                                                                                                                                                      | Test Description                                                                                                                                                                                                                                                                                                                                                                                                                | Method Refere                                                                                                                                                                    | ence**                                                                                                                                                                                                                                      |  |  |  |  |  |
| ALK-TITR-VA                                                                                                                                                                                                                                                                                | Water                                                                                                                                                       | Alkalinity Species by Titration                                                                                                                                                                                                                                                                                                                                                                                                 | APHA 2320 AI                                                                                                                                                                     | calinity                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  | otal alkalinity is determined by potentiometric titration to a hthalein alkalinity and total alkalinity values.                                                                                                                             |  |  |  |  |  |
| ANIONS-N+N-CALC-VA                                                                                                                                                                                                                                                                         | Water                                                                                                                                                       | Nitrite & Nitrate in Water<br>(Calculation)                                                                                                                                                                                                                                                                                                                                                                                     | EPA 300.0                                                                                                                                                                        |                                                                                                                                                                                                                                             |  |  |  |  |  |
| Nitrate and Nitrite (as N)                                                                                                                                                                                                                                                                 | ) is a calcula                                                                                                                                              | ted parameter. Nitrate and Nitrite (as N                                                                                                                                                                                                                                                                                                                                                                                        | ) = Nitrite (as N) +                                                                                                                                                             | Nitrate (as N).                                                                                                                                                                                                                             |  |  |  |  |  |
| CL-IC-N-VA                                                                                                                                                                                                                                                                                 | Water                                                                                                                                                       | Chloride in Water by IC                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 300.1 (mo                                                                                                                                                                    | od)                                                                                                                                                                                                                                         |  |  |  |  |  |
| Inorganic anions are and                                                                                                                                                                                                                                                                   | alyzed by lor                                                                                                                                               | n Chromatography with conductivity and                                                                                                                                                                                                                                                                                                                                                                                          | d/or UV detection.                                                                                                                                                               |                                                                                                                                                                                                                                             |  |  |  |  |  |
| EC-PCT-VA                                                                                                                                                                                                                                                                                  | Water                                                                                                                                                       | Conductivity (Automated)                                                                                                                                                                                                                                                                                                                                                                                                        | (Automated) APHA 2510 Auto. Conduc.                                                                                                                                              |                                                                                                                                                                                                                                             |  |  |  |  |  |
| This analysis is carried of electrode.                                                                                                                                                                                                                                                     | out using pro                                                                                                                                               | cedures adapted from APHA Method 2                                                                                                                                                                                                                                                                                                                                                                                              | 2510 "Conductivity                                                                                                                                                               | . Conductivity is determined using a conductivity                                                                                                                                                                                           |  |  |  |  |  |
| EC-SCREEN-VA                                                                                                                                                                                                                                                                               | Water                                                                                                                                                       | Conductivity Screen (Internal Use Only)                                                                                                                                                                                                                                                                                                                                                                                         | APHA 2510                                                                                                                                                                        |                                                                                                                                                                                                                                             |  |  |  |  |  |
| Qualitative analysis of co                                                                                                                                                                                                                                                                 | onductivity w                                                                                                                                               | where required during preparation of oth                                                                                                                                                                                                                                                                                                                                                                                        | er tests - e.g. TDS                                                                                                                                                              | , metals, etc.                                                                                                                                                                                                                              |  |  |  |  |  |
| F-IC-N-VA                                                                                                                                                                                                                                                                                  | Water                                                                                                                                                       | Fluoride in Water by IC                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 300.1 (mo                                                                                                                                                                    | od)                                                                                                                                                                                                                                         |  |  |  |  |  |
| Inorganic anions are ana                                                                                                                                                                                                                                                                   | alyzed by lor                                                                                                                                               | n Chromatography with conductivity and                                                                                                                                                                                                                                                                                                                                                                                          | d/or UV detection.                                                                                                                                                               |                                                                                                                                                                                                                                             |  |  |  |  |  |
| HARDNESS-D-CALC-VA                                                                                                                                                                                                                                                                         | Water                                                                                                                                                       | Hardness (as CaCO3), dissolved                                                                                                                                                                                                                                                                                                                                                                                                  | APHA 2340B                                                                                                                                                                       |                                                                                                                                                                                                                                             |  |  |  |  |  |
| "Total Hardness" refers                                                                                                                                                                                                                                                                    | to the sum o                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 | lardness is norma                                                                                                                                                                | esium concentrations, expressed in CaCO3 equivalents<br>Ily or preferentially calculated from dissolved Calcium ar                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                                                                                             |  |  |  |  |  |
| Ū                                                                                                                                                                                                                                                                                          | Water                                                                                                                                                       | Diss. Mercury in Water by CVAAS<br>or CVAFS                                                                                                                                                                                                                                                                                                                                                                                     | APHA 3030B/E                                                                                                                                                                     | EPA 1631E (mod)                                                                                                                                                                                                                             |  |  |  |  |  |
| IG-D-CVAA-VA                                                                                                                                                                                                                                                                               | red (0.45 um)                                                                                                                                               | or CVAFS<br>), preserved with hydrochloric acid, the                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  | EPA 1631E (mod)<br>xidation using bromine monochloride prior to reduction                                                                                                                                                                   |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a                                                                                                                                                                                                                      | red (0.45 um)                                                                                                                                               | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | xidation using bromine monochloride prior to reduction                                                                                                                                                                                      |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA                                                                                                                                                                                                     | red (0.45 um)<br>and analyzed<br>Water                                                                                                                      | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.                                                                                                                                                                                                                                                                                                                                                    | n undergo a cold-c<br>APHA 3030B/6                                                                                                                                               | xidation using bromine monochloride prior to reduction                                                                                                                                                                                      |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA<br>Water samples are filter                                                                                                                                                                         | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)                                                                                                     | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS                                                                                                                                                                                                                                                                                                       | n undergo a cold-c<br>APHA 3030B/6<br>ed by CRC ICPMS                                                                                                                            | xidation using bromine monochloride prior to reduction<br>020A (mod)                                                                                                                                                                        |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>/IET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S                                                                                                                                            | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)                                                                                                     | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz                                                                                                                                                                                                                                                          | n undergo a cold-c<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this                                                                                                     | xidation using bromine monochloride prior to reduction<br>020A (mod)                                                                                                                                                                        |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S<br>NH3-F-VA<br>This analysis is carried o                                                                                                   | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)<br>sulfur): Sulfide<br>Water<br>out, on sulfur                                                      | or CVAFS<br>), preserved with hydrochloric acid, then<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz<br>e and volatile sulfur species may not be<br>Ammonia in Water by Fluorescence<br>ric acid preserved samples, using proce                                                                                                                              | n undergo a cold-o<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this<br>J. ENVIRON. N<br>edures modified fro                                                             | xidation using bromine monochloride prior to reduction<br>6020A (mod)<br>5.<br>method.                                                                                                                                                      |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>//ET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S<br>//H3-F-VA<br>This analysis is carried o<br>of Chemistry, "Flow-inject<br>al.                                                            | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)<br>sulfur): Sulfide<br>Water<br>out, on sulfur                                                      | or CVAFS<br>), preserved with hydrochloric acid, then<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz<br>e and volatile sulfur species may not be<br>Ammonia in Water by Fluorescence<br>ric acid preserved samples, using proce                                                                                                                              | n undergo a cold-o<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this<br>J. ENVIRON. N<br>edures modified fro                                                             | xidation using bromine monochloride prior to reduction<br>5020A (mod)<br>5.<br>method.<br>MONIT., 2005, 7, 37-42, RSC<br>om J. Environ. Monit., 2005, 7, 37 - 42, The Royal Socie<br>se levels of ammonium in seawater", Roslyn J. Waston e |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S<br>NH3-F-VA<br>This analysis is carried o<br>of Chemistry, "Flow-injer<br>al.                                                               | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)<br>sulfur): Sulfide<br>Water<br>out, on sulfur<br>ction analysis                                    | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz<br>e and volatile sulfur species may not be<br>Ammonia in Water by Fluorescence<br>ric acid preserved samples, using proce<br>is with fluorescence detection for the de                                                                                  | n undergo a cold-o<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this<br>g J. ENVIRON. N<br>edures modified fro<br>etermination of trac<br>EPA 300.1 (mo                  | xidation using bromine monochloride prior to reduction<br>5020A (mod)<br>5.<br>method.<br>MONIT., 2005, 7, 37-42, RSC<br>om J. Environ. Monit., 2005, 7, 37 - 42, The Royal Socie<br>se levels of ammonium in seawater", Roslyn J. Waston e |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S<br>NH3-F-VA<br>This analysis is carried of<br>of Chemistry, "Flow-injer<br>al.<br>NO2-L-IC-N-VA<br>Inorganic anions are ana                 | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)<br>sulfur): Sulfide<br>Water<br>out, on sulfur<br>ction analysis                                    | or CVAFS<br>), preserved with hydrochloric acid, the<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz<br>e and volatile sulfur species may not be<br>Ammonia in Water by Fluorescence<br>ric acid preserved samples, using proce<br>is with fluorescence detection for the de<br>Nitrite in Water by IC (Low Level)                                            | n undergo a cold-o<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this<br>g J. ENVIRON. N<br>edures modified fro<br>etermination of trac<br>EPA 300.1 (mo                  | xidation using bromine monochloride prior to reduction<br>5020A (mod)<br>5.<br>method.<br>MONIT., 2005, 7, 37-42, RSC<br>om J. Environ. Monit., 2005, 7, 37 - 42, The Royal Socie<br>re levels of ammonium in seawater", Roslyn J. Waston o |  |  |  |  |  |
| HG-D-CVAA-VA<br>Water samples are filter<br>with stannous chloride, a<br>MET-D-CCMS-VA<br>Water samples are filter<br>Method Limitation (re: S<br>NH3-F-VA<br>This analysis is carried o<br>of Chemistry, "Flow-injer<br>al.<br>NO2-L-IC-N-VA<br>Inorganic anions are ana<br>NO3-L-IC-N-VA | red (0.45 um)<br>and analyzed<br>Water<br>red (0.45 um)<br>sulfur): Sulfide<br>Water<br>out, on sulfur<br>ction analysis<br>Water<br>alyzed by lor<br>Water | or CVAFS<br>), preserved with hydrochloric acid, then<br>d by CVAAS or CVAFS.<br>Dissolved Metals in Water by CRC<br>ICPMS<br>), preserved with nitric acid, and analyz<br>e and volatile sulfur species may not be<br>Ammonia in Water by Fluorescence<br>ric acid preserved samples, using proce<br>is with fluorescence detection for the de<br>Nitrite in Water by IC (Low Level)<br>n Chromatography with conductivity and | n undergo a cold-o<br>APHA 3030B/6<br>ed by CRC ICPMS<br>e recovered by this<br>g J. ENVIRON. N<br>edures modified fro<br>etermination of trac<br>EPA 300.1 (mo<br>EPA 300.1 (mo | xidation using bromine monochloride prior to reduction<br>5020A (mod)<br>5.<br>method.<br>MONIT., 2005, 7, 37-42, RSC<br>om J. Environ. Monit., 2005, 7, 37 - 42, The Royal Socie<br>re levels of ammonium in seawater", Roslyn J. Waston o |  |  |  |  |  |

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

#### **Reference Information**

It is recommended that this analysis be conducted in the field.

SO4-IC-N-VA Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| Laboratory Definition Code | Laboratory Location                                     |
|----------------------------|---------------------------------------------------------|
| VA                         | ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA |

#### Chain of Custody Numbers:

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



|                                     |                                                              |            |         | -         | -               |         |        |              |
|-------------------------------------|--------------------------------------------------------------|------------|---------|-----------|-----------------|---------|--------|--------------|
|                                     |                                                              | Workorder: | L238950 | 5         | Report Date: 06 | -DEC-19 |        | Page 1 of 10 |
|                                     | GHD Limited<br># 400 - 179 Colonnade Re<br>Ottawa ON K2E 7J4 | oad        |         |           |                 |         |        |              |
| Contact:                            | Airesse MacPhee                                              |            |         |           |                 |         |        |              |
| Test                                | Matrix                                                       | Reference  | Result  | Qualifier | Units           | RPD     | Limit  | Analyzed     |
| ALK-TITR-VA                         | Water                                                        |            |         |           |                 |         |        |              |
| Batch R                             | 4929176                                                      |            |         |           |                 |         |        |              |
| WG3231883-4                         | DUP                                                          | L2389505-1 |         |           |                 |         |        |              |
| Alkalinity, Tota                    | I (as CaCO3)                                                 | 115        | 114     |           | mg/L            | 0.2     | 20     | 30-NOV-19    |
| WG3231883-3<br>Alkalinity, Tota     |                                                              |            | 102.2   |           | %               |         | 85-115 | 30-NOV-19    |
| WG3231883-1<br>Alkalinity, Tota     | MB<br>I (as CaCO3)                                           |            | <1.0    |           | mg/L            |         | 1      | 30-NOV-19    |
| CL-IC-N-VA                          | Water                                                        |            |         |           |                 |         |        |              |
| Batch R                             | 4930106                                                      |            |         |           |                 |         |        |              |
| WG3231876-3                         | DUP                                                          | L2389505-1 |         |           |                 |         |        |              |
| Chloride (Cl)                       |                                                              | 1.12       | 1.11    |           | mg/L            | 0.4     | 20     | 29-NOV-19    |
| WG3231876-2<br>Chloride (Cl)        | LCS                                                          |            | 99.4    |           | %               |         | 90-110 | 29-NOV-19    |
| WG3231876-1                         | МВ                                                           |            |         |           |                 |         |        |              |
| Chloride (Cl)                       |                                                              |            | <0.50   |           | mg/L            |         | 0.5    | 29-NOV-19    |
| <b>WG3231876-4</b><br>Chloride (Cl) | MS                                                           | L2389505-2 | 101.4   |           | %               |         | 75-125 | 29-NOV-19    |
| EC-PCT-VA                           | Water                                                        |            |         |           |                 |         |        |              |
| Batch R                             | 4929176                                                      |            |         |           |                 |         |        |              |
| WG3231883-4                         | DUP                                                          | L2389505-1 |         |           |                 |         |        |              |
| Conductivity                        |                                                              | 216        | 214     |           | uS/cm           | 0.9     | 10     | 30-NOV-19    |
| WG3231883-3                         | LCS                                                          |            |         |           |                 |         |        |              |
| Conductivity                        |                                                              |            | 101.1   |           | %               |         | 90-110 | 30-NOV-19    |
| WG3231883-1                         | МВ                                                           |            |         |           |                 |         |        |              |
| Conductivity                        |                                                              |            | <2.0    |           | uS/cm           |         | 2      | 30-NOV-19    |
| F-IC-N-VA                           | Water                                                        |            |         |           |                 |         |        |              |
| Batch R                             | 4930106                                                      |            |         |           |                 |         |        |              |
| WG3231876-3                         | DUP                                                          | L2389505-1 |         |           |                 |         |        |              |
| Fluoride (F)                        |                                                              | <0.020     | <0.020  | RPD-NA    | mg/L            | N/A     | 20     | 29-NOV-19    |
| WG3231876-2<br>Fluoride (F)         | LCS                                                          |            | 103.3   |           | %               |         | 90-110 | 29-NOV-19    |
| <b>WG3231876-1</b><br>Fluoride (F)  | MB                                                           |            | <0.020  |           | mg/L            |         | 0.02   | 29-NOV-19    |
| <b>WG3231876-4</b><br>Fluoride (F)  | MS                                                           | L2389505-2 | 106.3   |           | %               |         | 75-125 | 29-NOV-19    |
| HG-D-CVAA-VA                        | Water                                                        |            |         |           |                 |         |        |              |



|                                   |                                                             | Workorder:                      | L2389505           | F         | Report Date: | 06-DEC-19  |          | Page 2 of 10           |
|-----------------------------------|-------------------------------------------------------------|---------------------------------|--------------------|-----------|--------------|------------|----------|------------------------|
| Client:                           | GHD Limited<br># 400 - 179 Colonnade R<br>Ottawa ON K2E 7J4 | Road                            |                    |           |              |            |          |                        |
| Contact:                          | Airesse MacPhee                                             |                                 |                    |           |              |            |          |                        |
| Test                              | Matrix                                                      | Reference                       | Result             | Qualifier | Units        | RPD        | Limit    | Analyzed               |
| HG-D-CVAA-VA                      | Water                                                       |                                 |                    |           |              |            |          |                        |
| Batch<br>WG3232386<br>Mercury (Hg | -                                                           | <b>L2389499-7</b><br><0.0000050 | <0.0000050         | RPD-NA    | mg/L         | N/A        | 20       | 01-DEC-19              |
| WG3232386<br>Mercury (Hg          |                                                             |                                 | 110.0              |           | %            |            | 80-120   | 01-DEC-19              |
| WG3232386<br>Mercury (Hg          |                                                             |                                 | <0.0000050         | 2         | mg/L         |            | 0.000005 | 01-DEC-19              |
| WG3232386<br>Mercury (Hg          |                                                             | L2389499-8                      | 106.6              |           | %            |            | 70-130   | 01-DEC-19              |
| MET-D-CCMS-\                      | A Water                                                     |                                 |                    |           |              |            |          |                        |
| Batch                             | R4928947                                                    |                                 |                    |           |              |            |          |                        |
| WG3231852                         | -3 DUP<br>Al)-Dissolved                                     | L2389505-1                      | 0.0051             |           | ~~~/l        | 10         |          |                        |
| ,                                 | b)-Dissolved                                                | 0.0058<br><0.00010              | 0.0051<br><0.00010 | RPD-NA    | mg/L         | 13<br>N/A  | 20       | 30-NOV-19              |
| Anumony (S<br>Arsenic (As)        | ,                                                           | <0.00010                        | <0.00010           |           | mg/L<br>mg/L | N/A<br>N/A | 20<br>20 | 30-NOV-19              |
| Barium (Ba)                       |                                                             | 0.00248                         | 0.00240            | RPD-NA    | mg/L         |            |          | 30-NOV-19              |
| · · ·                             | e)-Dissolved                                                | <0.00240                        | <0.00240           | RPD-NA    | mg/L         | 3.3<br>N/A | 20       | 30-NOV-19              |
| Bismuth (Bi                       | ,                                                           | <0.00010                        | <0.000050          | RPD-NA    | mg/L         | N/A<br>N/A | 20<br>20 | 30-NOV-19<br>30-NOV-19 |
| Boron (B)-D                       |                                                             | <0.000000                       | <0.000000          | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| . ,                               | Cd)-Dissolved                                               | <0.0000050                      | <0.0000050         |           | mg/L         | N/A        | 20       | 30-NOV-19              |
| Calcium (Ca                       | ,                                                           | 36.0                            | 36.0               |           | mg/L         | 0.1        | 20       | 30-NOV-19              |
| Cesium (Cs                        |                                                             | <0.000010                       | <0.000010          | RPD-NA    | mg/L         | 0.1<br>N/A | 20       | 30-NOV-19              |
|                                   | Cr)-Dissolved                                               | 0.00016                         | 0.00016            | RI D'NA   | mg/L         | 4.3        | 20       | 30-NOV-19              |
| Cobalt (Co)-                      |                                                             | <0.00010                        | <0.00010           | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Copper (Cu)                       |                                                             | 0.00066                         | 0.00064            |           | mg/L         | 2.8        | 20       | 30-NOV-19              |
| Iron (Fe)-Dis                     | ssolved                                                     | <0.010                          | <0.010             | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Lead (Pb)-D                       | Dissolved                                                   | <0.000050                       | <0.000050          | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Lithium (Li)-                     | Dissolved                                                   | <0.0010                         | <0.0010            | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Magnesium                         | (Mg)-Dissolved                                              | 3.12                            | 3.12               |           | mg/L         | 0.1        | 20       | 30-NOV-19              |
| Manganese                         | (Mn)-Dissolved                                              | 0.00089                         | 0.00087            |           | mg/L         | 1.8        | 20       | 30-NOV-19              |
| -                                 | n (Mo)-Dissolved                                            | 0.000091                        | 0.000092           |           | mg/L         | 0.3        | 20       | 30-NOV-19              |
| Nickel (Ni)-E                     | Dissolved                                                   | <0.00050                        | <0.00050           | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Phosphorus                        | (P)-Dissolved                                               | <0.050                          | <0.050             | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Potassium (                       | K)-Dissolved                                                | 0.059                           | 0.058              |           | mg/L         | 1.8        | 20       | 30-NOV-19              |
| Rubidium (R                       | Rb)-Dissolved                                               | <0.00020                        | <0.00020           | RPD-NA    | mg/L         | N/A        | 20       | 30-NOV-19              |
| Selenium (S                       | Se)-Dissolved                                               | 0.000090                        | 0.000079           |           | mg/L         | 13         | 20       | 30-NOV-19              |



Magnesium (Mg)-Dissolved

Test

#### **Quality Control Report**

Workorder: L2389505 Report Date: 06-DEC-19 Page 3 of 10 GHD Limited Client: # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water Batch R4928947 WG3231852-3 DUP L2389505-1 Silicon (Si)-Dissolved 1.26 1.28 mg/L 2.0 20 30-NOV-19 Silver (Ag)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 30-NOV-19 1.04 Sodium (Na)-Dissolved 1.04 mg/L 0.2 20 30-NOV-19 Strontium (Sr)-Dissolved 0.0499 0.0490 mg/L 1.8 20 30-NOV-19 Sulfur (S)-Dissolved 0.84 0.87 mg/L 3.4 20 30-NOV-19 Tellurium (Te)-Dissolved < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 20 30-NOV-19 Thallium (TI)-Dissolved < 0.000010 < 0.000010 **RPD-NA** mg/L N/A 20 30-NOV-19 Thorium (Th)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 30-NOV-19 Tin (Sn)-Dissolved < 0.00010 < 0.00010 RPD-NA mg/L N/A 20 30-NOV-19 Titanium (Ti)-Dissolved < 0.00030 < 0.00030 **RPD-NA** mg/L N/A 20 30-NOV-19 Tungsten (W)-Dissolved < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 30-NOV-19 Uranium (U)-Dissolved 0.000170 0.000160 mg/L 5.9 20 30-NOV-19 Vanadium (V)-Dissolved < 0.00050 < 0.00050 mg/L N/A 20 RPD-NA 30-NOV-19 Zinc (Zn)-Dissolved 0.0014 0.0014 mg/L 0.1 20 30-NOV-19 Zirconium (Zr)-Dissolved < 0.00020 < 0.00020 mg/L **RPD-NA** N/A 20 30-NOV-19 WG3231852-2 LCS 93.4 Aluminum (AI)-Dissolved % 30-NOV-19 80-120 Antimony (Sb)-Dissolved 96.3 % 80-120 30-NOV-19 Arsenic (As)-Dissolved 97.1 % 80-120 30-NOV-19 Barium (Ba)-Dissolved 97.2 % 80-120 30-NOV-19 Beryllium (Be)-Dissolved 94.6 % 80-120 30-NOV-19 Bismuth (Bi)-Dissolved 95.8 % 80-120 30-NOV-19 Boron (B)-Dissolved 91.5 % 80-120 30-NOV-19 Cadmium (Cd)-Dissolved % 94.7 80-120 30-NOV-19 Calcium (Ca)-Dissolved 95.9 % 80-120 30-NOV-19 Cesium (Cs)-Dissolved 99.9 % 80-120 30-NOV-19 Chromium (Cr)-Dissolved 97.0 % 80-120 30-NOV-19 95.1 Cobalt (Co)-Dissolved % 80-120 30-NOV-19 Copper (Cu)-Dissolved 93.2 % 80-120 30-NOV-19 Iron (Fe)-Dissolved 98.1 % 80-120 30-NOV-19 Lead (Pb)-Dissolved 97.8 % 80-120 30-NOV-19 Lithium (Li)-Dissolved 92.8 % 80-120 30-NOV-19

94.6

%

80-120

30-NOV-19



|                                       |                                                             | Workorder: | L238950  | 5         | Report Date: 0 | 6-DEC-19 |          | Page 4 of 10           |
|---------------------------------------|-------------------------------------------------------------|------------|----------|-----------|----------------|----------|----------|------------------------|
| Client:                               | GHD Limited<br># 400 - 179 Colonnade F<br>Ottawa ON K2E 7J4 | Road       |          |           |                |          |          |                        |
| Contact:                              | Airesse MacPhee                                             |            |          |           |                |          |          |                        |
| Test                                  | Matrix                                                      | Reference  | Result   | Qualifier | Units          | RPD      | Limit    | Analyzed               |
| MET-D-CCMS-                           | VA Water                                                    |            |          |           |                |          |          |                        |
| Batch                                 | R4928947                                                    |            |          |           |                |          |          |                        |
| WG3231852<br>Mangapasa                | -2 LCS<br>(Mn)-Dissolved                                    |            | 95.4     |           | %              |          | 80-120   | 30-NOV-19              |
| -                                     | n (Mo)-Dissolved                                            |            | 95.9     |           | %              |          | 80-120   | 30-NOV-19<br>30-NOV-19 |
| Nickel (Ni)-[                         |                                                             |            | 94.2     |           | %              |          | 80-120   | 30-NOV-19              |
| . ,                                   | s (P)-Dissolved                                             |            | 102.6    |           | %              |          | 70-130   | 30-NOV-19              |
| -                                     | (K)-Dissolved                                               |            | 98.7     |           | %              |          | 80-120   | 30-NOV-19              |
|                                       | Rb)-Dissolved                                               |            | 91.1     |           | %              |          | 80-120   | 30-NOV-19              |
|                                       | Se)-Dissolved                                               |            | 101.4    |           | %              |          | 80-120   | 30-NOV-19              |
| Silicon (Si)-                         | ,                                                           |            | 99.3     |           | %              |          | 60-120   | 30-NOV-19              |
| Silver (Ag)-I                         |                                                             |            | 99.6     |           | %              |          | 80-120   | 30-NOV-19              |
| Sodium (Na                            |                                                             |            | 97.0     |           | %              |          | 80-120   | 30-NOV-19              |
|                                       | Sr)-Dissolved                                               |            | 100.9    |           | %              |          | 80-120   | 30-NOV-19              |
| Sulfur (S)-D                          |                                                             |            | 103.9    |           | %              |          | 80-120   | 30-NOV-19              |
| Tellurium (T                          | e)-Dissolved                                                |            | 99.9     |           | %              |          | 80-120   | 30-NOV-19              |
| Thallium (TI                          | I)-Dissolved                                                |            | 97.4     |           | %              |          | 80-120   | 30-NOV-19              |
| Thorium (Th                           | n)-Dissolved                                                |            | 94.4     |           | %              |          | 80-120   | 30-NOV-19              |
| Tin (Sn)-Dis                          | solved                                                      |            | 95.9     |           | %              |          | 80-120   | 30-NOV-19              |
| Titanium (Ti                          | i)-Dissolved                                                |            | 92.0     |           | %              |          | 80-120   | 30-NOV-19              |
| Tungsten (V                           | V)-Dissolved                                                |            | 98.5     |           | %              |          | 80-120   | 30-NOV-19              |
| Uranium (U)                           | )-Dissolved                                                 |            | 97.2     |           | %              |          | 80-120   | 30-NOV-19              |
| Vanadium (                            | V)-Dissolved                                                |            | 97.2     |           | %              |          | 80-120   | 30-NOV-19              |
| Zinc (Zn)-Di                          | issolved                                                    |            | 97.2     |           | %              |          | 80-120   | 30-NOV-19              |
| Zirconium (2                          | Zr)-Dissolved                                               |            | 98.4     |           | %              |          | 80-120   | 30-NOV-19              |
| WG3231852                             |                                                             |            |          |           |                |          |          |                        |
|                                       | Al)-Dissolved                                               |            | <0.0010  |           | mg/L           |          | 0.001    | 30-NOV-19              |
|                                       | Sb)-Dissolved                                               |            | <0.00010 |           | mg/L           |          | 0.0001   | 30-NOV-19              |
| Arsenic (As)                          |                                                             |            | <0.00010 |           | mg/L           |          | 0.0001   | 30-NOV-19              |
| Barium (Ba)                           |                                                             |            | <0.00010 |           | mg/L           |          | 0.0001   | 30-NOV-19              |
| , , , , , , , , , , , , , , , , , , , | Be)-Dissolved                                               |            | <0.00010 |           | mg/L           |          | 0.0001   | 30-NOV-19              |
| Bismuth (Bi                           |                                                             |            | <0.00005 | 0         | mg/L           |          | 0.00005  | 30-NOV-19              |
| Boron (B)-D                           |                                                             |            | <0.010   |           | mg/L           |          | 0.01     | 30-NOV-19              |
|                                       | Cd)-Dissolved                                               |            | <0.00000 | 50        | mg/L           |          | 0.000005 | 30-NOV-19              |
|                                       | a)-Dissolved                                                |            | <0.050   | _         | mg/L           |          | 0.05     | 30-NOV-19              |
| Cesium (Cs                            |                                                             |            | <0.00001 |           | mg/L           |          | 0.00001  | 30-NOV-19              |
| Chromium (                            | (Cr)-Dissolved                                              |            | <0.00010 |           | mg/L           |          | 0.0001   | 30-NOV-19              |



Workorder: L2389505 Report Date: 06-DEC-19 Page 5 of 10 GHD Limited Client: # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water R4928947 Batch WG3231852-1 MB Cobalt (Co)-Dissolved < 0.00010 0.0001 mg/L 30-NOV-19 0.0002 Copper (Cu)-Dissolved < 0.00020 mg/L 30-NOV-19 Iron (Fe)-Dissolved < 0.010 mg/L 0.01 30-NOV-19 Lead (Pb)-Dissolved < 0.000050 0.00005 mg/L 30-NOV-19 0.001 Lithium (Li)-Dissolved < 0.0010 mg/L 30-NOV-19 Magnesium (Mg)-Dissolved < 0.0050 mg/L 0.005 30-NOV-19 0.0001 Manganese (Mn)-Dissolved < 0.00010 mg/L 30-NOV-19 Molybdenum (Mo)-Dissolved < 0.000050 0.00005 mg/L 30-NOV-19 Nickel (Ni)-Dissolved < 0.00050 mg/L 0.0005 30-NOV-19 Phosphorus (P)-Dissolved < 0.050 mg/L 0.05 30-NOV-19 Potassium (K)-Dissolved <0.050 mg/L 0.05 30-NOV-19 0.0002 Rubidium (Rb)-Dissolved < 0.00020 mg/L 30-NOV-19 Selenium (Se)-Dissolved < 0.000050 0.00005 mg/L 30-NOV-19 Silicon (Si)-Dissolved < 0.050 0.05 mg/L 30-NOV-19 Silver (Ag)-Dissolved < 0.000010 mg/L 0.00001 30-NOV-19 Sodium (Na)-Dissolved < 0.050 mg/L 0.05 30-NOV-19 Strontium (Sr)-Dissolved 0.0002 < 0.00020 mg/L 30-NOV-19 Sulfur (S)-Dissolved <0.50 mg/L 0.5 30-NOV-19 Tellurium (Te)-Dissolved < 0.00020 mg/L 0.0002 30-NOV-19 Thallium (TI)-Dissolved < 0.000010 0.00001 mg/L 30-NOV-19 Thorium (Th)-Dissolved 0.0001 < 0.00010 mg/L 30-NOV-19 Tin (Sn)-Dissolved < 0.00010 mg/L 0.0001 30-NOV-19 Titanium (Ti)-Dissolved < 0.00030 mg/L 0.0003 30-NOV-19 Tungsten (W)-Dissolved < 0.00010 0.0001 mg/L 30-NOV-19 Uranium (U)-Dissolved < 0.000010 mg/L 0.00001 30-NOV-19 0.0005 Vanadium (V)-Dissolved < 0.00050 mg/L 30-NOV-19 Zinc (Zn)-Dissolved < 0.0010 0.001 mg/L 30-NOV-19 0.0002 Zirconium (Zr)-Dissolved < 0.00020 mg/L 30-NOV-19 WG3231852-4 L2389505-2 MS % Aluminum (AI)-Dissolved 91.6 70-130 30-NOV-19 Antimony (Sb)-Dissolved 96.9 % 70-130 30-NOV-19 Arsenic (As)-Dissolved 103.8 % 70-130 30-NOV-19 Barium (Ba)-Dissolved 94.2 % 70-130 30-NOV-19 Beryllium (Be)-Dissolved 92.8 % 70-130 30-NOV-19



Client:

Test

Batch

### **Quality Control Report**

Workorder: L2389505 Report Date: 06-DEC-19 Page 6 of 10 GHD Limited # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-D-CCMS-VA Water R4928947 WG3231852-4 MS L2389505-2 Bismuth (Bi)-Dissolved 91.7 % 70-130 30-NOV-19 Boron (B)-Dissolved 94.5 % 70-130 30-NOV-19

| Boron (B)-Dissolved       | 94.5  |      | % | 70-130 | 30-NOV-19 |
|---------------------------|-------|------|---|--------|-----------|
| Cadmium (Cd)-Dissolved    | 94.6  |      | % | 70-130 | 30-NOV-19 |
| Calcium (Ca)-Dissolved    | N/A   | MS-B | % | -      | 30-NOV-19 |
| Cesium (Cs)-Dissolved     | 101.1 |      | % | 70-130 | 30-NOV-19 |
| Chromium (Cr)-Dissolved   | 95.0  |      | % | 70-130 | 30-NOV-19 |
| Cobalt (Co)-Dissolved     | 92.1  |      | % | 70-130 | 30-NOV-19 |
| Copper (Cu)-Dissolved     | 89.6  |      | % | 70-130 | 30-NOV-19 |
| Iron (Fe)-Dissolved       | 94.8  |      | % | 70-130 | 30-NOV-19 |
| Lead (Pb)-Dissolved       | 92.6  |      | % | 70-130 | 30-NOV-19 |
| Lithium (Li)-Dissolved    | 87.8  |      | % | 70-130 | 30-NOV-19 |
| Magnesium (Mg)-Dissolved  | N/A   | MS-B | % | -      | 30-NOV-19 |
| Manganese (Mn)-Dissolved  | 93.4  |      | % | 70-130 | 30-NOV-19 |
| Molybdenum (Mo)-Dissolved | 91.9  |      | % | 70-130 | 30-NOV-19 |
| Nickel (Ni)-Dissolved     | 90.5  |      | % | 70-130 | 30-NOV-19 |
| Phosphorus (P)-Dissolved  | 109.9 |      | % | 70-130 | 30-NOV-19 |
| Potassium (K)-Dissolved   | 96.5  |      | % | 70-130 | 30-NOV-19 |
| Rubidium (Rb)-Dissolved   | 92.3  |      | % | 70-130 | 30-NOV-19 |
| Selenium (Se)-Dissolved   | 115.4 |      | % | 70-130 | 30-NOV-19 |
| Silicon (Si)-Dissolved    | 95.5  |      | % | 70-130 | 30-NOV-19 |
| Silver (Ag)-Dissolved     | 96.6  |      | % | 70-130 | 30-NOV-19 |
| Sodium (Na)-Dissolved     | 97.9  |      | % | 70-130 | 30-NOV-19 |
| Strontium (Sr)-Dissolved  | N/A   | MS-B | % | -      | 30-NOV-19 |
| Sulfur (S)-Dissolved      | 107.3 |      | % | 70-130 | 30-NOV-19 |
| Tellurium (Te)-Dissolved  | 101.1 |      | % | 70-130 | 30-NOV-19 |
| Thallium (TI)-Dissolved   | 93.0  |      | % | 70-130 | 30-NOV-19 |
| Thorium (Th)-Dissolved    | 94.5  |      | % | 70-130 | 30-NOV-19 |
| Tin (Sn)-Dissolved        | 94.7  |      | % | 70-130 | 30-NOV-19 |
| Titanium (Ti)-Dissolved   | 94.0  |      | % | 70-130 | 30-NOV-19 |
| Tungsten (W)-Dissolved    | 95.2  |      | % | 70-130 | 30-NOV-19 |
| Uranium (U)-Dissolved     | 93.8  |      | % | 70-130 | 30-NOV-19 |
| Vanadium (V)-Dissolved    | 96.5  |      | % | 70-130 | 30-NOV-19 |
| Zinc (Zn)-Dissolved       | 96.1  |      | % | 70-130 | 30-NOV-19 |
|                           |       |      |   |        |           |



|                                          |                   |                                    |                              | Quant    | y Contr   | orkeport     |           |        |              |
|------------------------------------------|-------------------|------------------------------------|------------------------------|----------|-----------|--------------|-----------|--------|--------------|
|                                          |                   |                                    | Workorder:                   | L2389505 | 5         | Report Date: | 06-DEC-19 |        | Page 7 of 10 |
| Client:                                  |                   | ed<br>9 Colonnade Roa<br>N K2E 7J4 | ad                           |          |           |              |           |        |              |
| Contact:                                 | Airesse M         | acPhee                             |                              |          |           |              |           |        |              |
| Test                                     |                   | Matrix                             | Reference                    | Result   | Qualifier | Units        | RPD       | Limit  | Analyzed     |
| MET-D-CCMS-V                             | A                 | Water                              |                              |          |           |              |           |        |              |
| Batch I<br>WG3231852-4<br>Zirconium (Zr  |                   |                                    | L2389505-2                   | 92.1     |           | %            |           | 70-130 | 30-NOV-19    |
| NH3-F-VA                                 |                   | Water                              |                              |          |           |              |           |        |              |
| Batch                                    | R4929363          |                                    |                              |          |           |              |           |        |              |
| <b>WG3232149-3</b><br>Ammonia, To        |                   |                                    | <b>L2389505-1</b><br>0.0058  | 0.0063   |           | mg/L         | 8.2       | 20     | 30-NOV-19    |
| <b>WG3232149-2</b><br>Ammonia, To        |                   |                                    |                              | 97.3     |           | %            |           | 85-115 | 30-NOV-19    |
| <b>WG3232149-</b> 1<br>Ammonia, To       |                   |                                    |                              | <0.0050  |           | mg/L         |           | 0.005  | 30-NOV-19    |
| <b>WG3232149-4</b><br>Ammonia, To        |                   |                                    | L2389505-2                   | 101.9    |           | %            |           | 75-125 | 30-NOV-19    |
| NO2-L-IC-N-VA                            |                   | Water                              |                              |          |           |              |           |        |              |
| Batch I<br>WG3231876-3<br>Nitrite (as N) | R4930106<br>3 DUP |                                    | <b>L2389505-1</b><br><0.0010 | <0.0010  | RPD-NA    | mg/L         | N/A       | 20     | 29-NOV-19    |
| WG3231876-2<br>Nitrite (as N)            | 2 LCS             |                                    |                              | 101.0    |           | %            |           | 90-110 | 29-NOV-19    |
| WG3231876-1<br>Nitrite (as N)            | I MB              |                                    |                              | <0.0010  |           | mg/L         |           | 0.001  | 29-NOV-19    |
| WG3231876-4<br>Nitrite (as N)            | 4 MS              |                                    | L2389505-2                   | 102.2    |           | %            |           | 75-125 | 29-NOV-19    |
| NO3-L-IC-N-VA                            |                   | Water                              |                              |          |           |              |           |        |              |
|                                          | R4930106          |                                    |                              |          |           |              |           |        |              |
| WG3231876-3<br>Nitrate (as N)            |                   |                                    | <b>L2389505-1</b><br>0.0615  | 0.0612   |           | mg/L         | 0.6       | 20     | 29-NOV-19    |
| WG3231876-2<br>Nitrate (as N)            |                   |                                    |                              | 101.0    |           | %            |           | 90-110 | 29-NOV-19    |
| WG3231876-1<br>Nitrate (as N)            |                   |                                    |                              | <0.0050  |           | mg/L         |           | 0.005  | 29-NOV-19    |
| WG3231876-4<br>Nitrate (as N)            |                   |                                    | L2389505-2                   | 102.1    |           | %            |           | 75-125 | 29-NOV-19    |
| PH-PCT-VA                                |                   | Water                              |                              |          |           |              |           |        |              |



|                              |                   |                                    |                           |          |           | •            |           |         |              |
|------------------------------|-------------------|------------------------------------|---------------------------|----------|-----------|--------------|-----------|---------|--------------|
|                              |                   |                                    | Workorder:                | L2389505 |           | Report Date: | 06-DEC-19 |         | Page 8 of 10 |
| Client:                      |                   | ed<br>9 Colonnade Roa<br>N K2E 7J4 | ad                        |          |           |              |           |         |              |
| Contact:                     | Airesse Ma        | acPhee                             |                           |          |           |              |           |         |              |
| Test                         |                   | Matrix                             | Reference                 | Result   | Qualifier | Units        | RPD       | Limit   | Analyzed     |
| PH-PCT-VA                    |                   | Water                              |                           |          |           |              |           |         |              |
| WG3231883-2                  | R4929176<br>2 CRM |                                    | VA-PH7-BUF                |          |           |              |           |         |              |
| рН                           |                   |                                    |                           | 7.03     |           | рН           |           | 6.9-7.1 | 30-NOV-19    |
| <b>WG3231883-4</b><br>рН     | DUP               |                                    | <b>L2389505-1</b><br>8.18 | 8.18     | J         | рН           | 0.00      | 0.3     | 30-NOV-19    |
| SO4-IC-N-VA                  |                   | Water                              |                           |          |           |              |           |         |              |
| Batch F                      | R4930106          |                                    |                           |          |           |              |           |         |              |
| WG3231876-3<br>Sulfate (SO4) | -                 |                                    | <b>L2389505-1</b><br>1.68 | 1.67     |           | mg/L         | 0.6       | 20      | 29-NOV-19    |
| WG3231876-2<br>Sulfate (SO4) |                   |                                    |                           | 100.6    |           | %            |           | 90-110  | 29-NOV-19    |
| WG3231876-1<br>Sulfate (SO4) |                   |                                    |                           | <0.30    |           | mg/L         |           | 0.3     | 29-NOV-19    |
| WG3231876-4<br>Sulfate (SO4) |                   |                                    | L2389505-2                | 101.6    |           | %            |           | 75-125  | 29-NOV-19    |
| <u> </u>                     |                   |                                    |                           |          |           |              |           |         |              |

Workorder: L2389505

| Client:  | GHD Limited                |
|----------|----------------------------|
|          | # 400 - 179 Colonnade Road |
|          | Ottawa ON K2E 7J4          |
| Contact: | Airesse MacPhee            |

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |
|       |                                             |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                        |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample. |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.        |

Workorder: L2389505

Report Date: 06-DEC-19

Client: GHD Limited # 400 - 179 Colonnade Road Ottawa ON K2E 7J4 Contact: Airesse MacPhee

Page 10 of 10

#### Hold Time Exceedances:

| Sample |                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID     | Sampling Date         | Date Processed                                                                                                                                                                                               | Rec. HT                                                                                                                                                                                                                                                                                                                                                     | Actual HT                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units                                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                            |
|        |                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|        |                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
| 1      | 27-NOV-19 09:30       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
| 2      | 27-NOV-19 10:30       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
| 3      | 27-NOV-19 11:00       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
| 4      | 27-NOV-19 11:40       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
| 5      | 27-NOV-19 12:05       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
| 6      | 27-NOV-19 12:40       | 30-NOV-19 10:25                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours                                                                                                                                                                                                                                  | EHTR-FM                                                                                                                                                                                                                                                              |
|        | 1<br>2<br>3<br>4<br>5 | ID         Sampling Date           1         27-NOV-19 09:30           2         27-NOV-19 10:30           3         27-NOV-19 11:00           4         27-NOV-19 11:40           5         27-NOV-19 12:05 | ID         Sampling Date         Date Processed           1         27-NOV-19 09:30         30-NOV-19 10:25           2         27-NOV-19 10:30         30-NOV-19 10:25           3         27-NOV-19 11:00         30-NOV-19 10:25           4         27-NOV-19 11:40         30-NOV-19 10:25           5         27-NOV-19 12:05         30-NOV-19 10:25 | ID         Sampling Date         Date Processed         Rec. HT           1         27-NOV-19 09:30         30-NOV-19 10:25         0.25           2         27-NOV-19 10:30         30-NOV-19 10:25         0.25           3         27-NOV-19 11:00         30-NOV-19 10:25         0.25           4         27-NOV-19 11:40         30-NOV-19 10:25         0.25           5         27-NOV-19 12:05         30-NOV-19 10:25         0.25 | IDSampling DateDate ProcessedRec. HTActual HT127-NOV-19 09:3030-NOV-19 10:250.2573227-NOV-19 10:3030-NOV-19 10:250.2572327-NOV-19 11:0030-NOV-19 10:250.2572427-NOV-19 11:4030-NOV-19 10:250.2571527-NOV-19 12:0530-NOV-19 10:250.2570 | IDSampling DateDate ProcessedRec. HTActual HTUnits127-NOV-19 09:3030-NOV-19 10:250.2573hours227-NOV-19 10:3030-NOV-19 10:250.2572hours327-NOV-19 11:0030-NOV-19 10:250.2572hours427-NOV-19 11:4030-NOV-19 10:250.2571hours527-NOV-19 12:0530-NOV-19 10:250.2570hours |

#### Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended. EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

#### Notes\*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2389505 were received on 28-NOV-19 18:10.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878



COC Number: 17 -

Page of

SEPT 2017 FRONT

|                                       | www.alsglobal.com                                                      | •                 |                                          | <u>_</u>                              |                                              |                 |                                                        |          |            |          | 1                                  |          |                |           |            |          |               |               |                       |               |               |         |          |
|---------------------------------------|------------------------------------------------------------------------|-------------------|------------------------------------------|---------------------------------------|----------------------------------------------|-----------------|--------------------------------------------------------|----------|------------|----------|------------------------------------|----------|----------------|-----------|------------|----------|---------------|---------------|-----------------------|---------------|---------------|---------|----------|
| Report To                             | Contact and company name below will appear on the final report         |                   | Report Format                            | / Distribution                        |                                              | <b> </b>        | Select                                                 | Servi    | ce Lev     | el Bel   | ow - 0                             | Contac   | st your        | r AM to   | o confi    | rm all   | E&P T         | ATs (s        | urcha                 | rges i        | nay ap        | oply)   |          |
| Company:                              | GHD Limited                                                            | Select Report F   | ormat: 🗹 PDF [                           | I EXCEL I EDD                         | D (DIGITAL)                                  |                 | Reg                                                    | gular    | [R] [      | 3 Stan   | dard T                             | AT if re | ceived         | by 3 pr   | m - busi   | ness da  | ys - no       | surchar       | ges app               | oly           |               |         |          |
| Contact:                              | Airesse MacPhee, Angle Navin                                           | Quality Control   | (QC) Report with R                       | eport 🗹 YES                           | □ NO                                         | Υ<br>Days)      | 4 day                                                  | [P4-2    | 20%]       |          |                                    | ENCY     | 1 Bu           | sines     | ss day     | [E1 - 1  | 100%          | J             |                       |               |               |         | С        |
| Phone:                                | 604 248 3661                                                           | Compare Results   | s to Criteria on Report - I              | provide details below                 | if box checked                               | IORIT<br>ness ( | 3 day                                                  | [P3-2    | 25%]       |          |                                    | IERGE    | Same           | e Day,    | , Week     | kend c   | or Staf       | tutory        | holid                 | lay [E        | 2 -20(        | 0%      | _        |
|                                       | Company address below will appear on the final report                  | Select Distributi | on: 🗹 Email                              | 🗆 MAIL 🛛 F                            | AX                                           | PR<br>(Busi     | 2 day                                                  | [P2-{    | 50%]       |          |                                    | Ē        | (Labo          | orator    | ry ope     | ning f   | ees m         | ау ар         | ply)]                 |               |               |         |          |
| Street:                               | 455 Phillip Street                                                     | Email 1 or Fax    | airesse.macphee@                         | @ghd.com                              |                                              |                 | Date and                                               | d Time   | Require    | ed for a | all E&F                            | PTATs    | s:             |           |            |          | dd-m          | mm-yy         | / h <mark>h:</mark> m | nm            |               |         |          |
| City/Province:                        | Waterloo, ON                                                           | Email 2           | Laurie Clark@ghd                         | .com, Natasha.T                       | url@ghd.com                                  | For tes         | ts that c                                              | an not b | e perfor   | med ac   | cording                            | g to the | service        | level se  | elected, y | you will | be cont       | acted.        |                       |               |               |         |          |
| Postal Code:                          | N2L 3X2                                                                | Email 3           | Michaela.Dyck@g                          | hd.com,Lainey-k                       | (ong@ghd.com                                 |                 |                                                        | (2, 2)   |            | 1        | •                                  |          | Ana            | alysis    | Requ       | est      |               |               |                       |               |               |         |          |
| Invoice To                            | Same as Report To                                                      | 1                 | Invoice Dis                              | stribution                            |                                              |                 |                                                        | Indica   | ate Filter | red (F)  | Prese                              | erved (P | P) or Fil      | Itered a  | and Pres   | erved (  | F/P) be       | low           |                       | · .           |               | deta    |          |
|                                       | Copy of Invoice with Report DI YES DI NO                               | Select Invoice D  | Distribution: 🗹 EMA                      |                                       | ] FAX                                        |                 |                                                        |          |            |          | F/P                                |          | ( T            | · .       | ·          |          | •             |               |                       | . 1           | ľ             | her     |          |
| Company:                              |                                                                        | Email 1 or Fax    | APinvoices-735@                          | ghd.com                               |                                              |                 |                                                        |          |            |          | (ç                                 |          | · ·            |           | · • • •    | ·        |               |               |                       |               |               | further |          |
| Contact:                              |                                                                        | Email 2           |                                          |                                       |                                              |                 |                                                        |          |            |          | lues                               |          | l.             | ·         |            |          |               |               |                       |               |               | ide     |          |
|                                       | Project Information                                                    | Oil               | and Gas Required                         | d Fields (client                      | use)                                         |                 | (N+N                                                   |          |            |          | Hard                               |          |                |           |            |          |               |               |                       |               |               | provide |          |
| ALS Account #                         | # / Quote #: Q72562                                                    | AFE/Cost Center:  |                                          | PO#                                   |                                              | ] .             | NO3, I                                                 |          |            |          | f                                  |          | ··             |           |            | ·        |               |               |                       |               |               | lease f | ~        |
| Job #:                                | 056484-54                                                              | Major/Minor Code: |                                          | Routing Code:                         |                                              |                 | ž                                                      |          |            |          | gri                                |          |                | ÷         |            |          |               |               |                       |               |               | plea    | Ľ        |
| PO / AFE:                             | 73515713-2                                                             | Requisitioner:    |                                          |                                       |                                              | <u> </u>        | N02,                                                   |          |            |          | clud                               |          |                |           |            |          |               |               |                       |               | 9             | ns (    | AIN      |
| LSD:                                  | Phase 54 - Tahsis GW                                                   | Location:         |                                          |                                       |                                              | ated            | S04,                                                   |          |            |          | s (in                              |          | 1              |           |            |          |               |               |                       |               | 로             | ē       | - NO     |
| ALS Lab Wor                           | k Order # (lab use only):                                              | ALS Contact:      | Selam W.                                 | Sampler: C                            | Thorne                                       | y (Speci        | (CI, F, S                                              |          |            |          | ed Metals (including Hg, Hardness) |          |                |           |            |          |               |               |                       |               | S .           | is haza | R OF C   |
| ALS Sample #                          | Sample Identification and/or Coordinates                               |                   | Date                                     | Time                                  | Comula Tuna                                  | Alkalinity      | Anions                                                 |          |            | _        | No.                                |          |                |           |            |          |               |               |                       |               | SAMPLES       | ple     | 882      |
| (lab use only)                        | (This description will appear on the report)                           |                   | (dd-mmm-yy)                              | (hh:mm)                               | Sample Type                                  | Alka            | Ani                                                    | Ha       | ы          | NH3      | Dissolv                            |          |                |           |            |          | 1             |               |                       |               | SAI           | Sampl   | NN       |
|                                       | WG-56484-271119-CT-08                                                  |                   | 27-Nov-19                                | 9:30                                  | Water                                        | X               | X                                                      | X        | X          | X        |                                    |          |                | · ·       |            |          |               |               |                       |               |               |         | 4        |
|                                       | - 09                                                                   |                   | 1                                        | 10:30                                 |                                              | 1               |                                                        | ł        |            | 1        |                                    |          |                |           |            |          |               |               | _                     |               |               |         | 4        |
|                                       | -10                                                                    |                   |                                          | 11:00                                 |                                              |                 |                                                        | ++       |            |          |                                    |          |                |           |            |          |               | <u> </u>      |                       |               |               |         | -<br>U   |
|                                       | -10                                                                    |                   |                                          |                                       |                                              | +               | $\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$ | -++      | ++         | ++       |                                    |          | ├ <b>─</b> ──┤ |           | $\vdash$   | +        | -+            | -+            | -+-                   |               |               |         | 규        |
| · · · · · · · · · · · · · · · · · · · |                                                                        |                   |                                          | 11:40                                 | <u>                                     </u> | ++              | $\left  \right $                                       | +        | ++         | ++       | -{-}                               |          | <u>⊢ -</u> +   | $\vdash$  | ┝──╁       |          |               | $\rightarrow$ | -+                    |               | -+            |         | 4        |
|                                       | -12                                                                    |                   |                                          | 12:05                                 |                                              |                 | $\left  \cdot \right $                                 | -16-1    | 1/1        | 4        |                                    |          | ┢━━━┥          | <b> </b>  |            |          | $\rightarrow$ |               |                       | $\rightarrow$ | $\rightarrow$ |         | <u> </u> |
|                                       | <u>v</u> 4)3                                                           |                   |                                          | 12:40                                 | V                                            |                 | V                                                      | ~        |            | ₩        | V                                  |          | $\square$      |           | °          |          |               | -+            | $- \bot$              |               |               |         | Ч        |
|                                       |                                                                        |                   |                                          |                                       |                                              |                 |                                                        | ·        | ·· ·· ··   |          |                                    |          | ·              |           |            |          |               |               | ľ                     | 1             | t             |         |          |
|                                       |                                                                        |                   |                                          |                                       | <i>*</i> .                                   |                 |                                                        |          |            |          |                                    |          |                | $\square$ |            |          |               |               |                       |               |               |         |          |
|                                       |                                                                        | •                 | And a star                               | · · ·                                 | · · · ·                                      | · .             |                                                        |          |            |          | η.                                 |          | · · ·          |           |            |          | · .           |               | _                     | $\neg$        |               |         |          |
|                                       |                                                                        |                   | * 11 ×                                   |                                       |                                              |                 |                                                        |          |            |          |                                    |          | <u> </u>       |           | ╞┷┉╋       |          |               |               | -+                    | -+            |               | -+      |          |
|                                       |                                                                        |                   |                                          |                                       |                                              |                 |                                                        |          |            |          |                                    |          | ┝━╌┨           |           | $\vdash$   |          |               |               | -+                    |               |               |         |          |
|                                       |                                                                        | ····              |                                          |                                       | · · · ·                                      |                 |                                                        |          |            | <u> </u> | 1.1                                |          | <u>├</u> ──-   |           | $\vdash$   |          | <u> </u>      | $\rightarrow$ | -+-                   |               |               |         |          |
|                                       | L                                                                      |                   |                                          | 1                                     |                                              | <u> </u>        |                                                        |          |            |          |                                    |          |                |           |            |          | <u> </u>      |               | <u> </u>              |               |               |         |          |
| Drinking                              | Water (DW) Samples <sup>1</sup> (client use) Special Instructions / Sp |                   | dd on report by clic<br>tronic COC only) | king on the drop                      | -down list below                             |                 |                                                        |          |            | SAM      |                                    |          |                |           | RECE       |          | (lab u        | se on         |                       | NIa           | <del></del>   |         | <b>T</b> |
|                                       | en from a Regulated DW System?                                         | (elec             |                                          | · · · · · · · · · · · · · · · · · · · |                                              | Froze           |                                                        |          |            | ibec     |                                    | ſ        |                | vations   |            | Yes      | Н             | 1<br>1        |                       | No            |               | F       | 1        |
| -                                     | s Øhno                                                                 | 1 11              | LI To                                    | - 0-1                                 |                                              |                 | 'acks<br>ing Init                                      |          |            | nes      | ц                                  | Custo    | Juy se         | eal inta  | act        | Yes      | - <b>-</b> -  | 1             |                       | No            |               | لسا     | I        |
|                                       | s ØNO<br>human consumption/ use?                                       | + Ho              | IC JIY                                   | mes :                                 |                                              | 000             |                                                        |          | COOLEF     | R TEM    | PERAT                              | TURES    | °C             | 7         | <b></b>    | FP       | NAL CC        | DOLER         | TEMPF                 | RATI          | RES °C        |         |          |
| •                                     |                                                                        |                   |                                          |                                       |                                              |                 |                                                        |          | T          |          |                                    |          |                |           | <b></b>    |          | T             |               |                       |               | <u> </u>      |         | 0        |
|                                       | S DA NO                                                                | 1                 | INITIAL SHIPMEN                          | T RECEPTION /                         | Tab use only)                                |                 |                                                        |          |            |          | <br>F                              | INAL     | SHIP           | MENT      | T REC      | FPTIC    |               | h use         |                       |               |               |         |          |
| Released by                           | Time                                                                   |                   |                                          | Date:                                 | iab use only)                                | Time            |                                                        | Rece     | ived b     | y: .     | $\overline{n}$                     |          |                | Date      |            | 11       |               |               | $\frac{1}{10}$        |               | lime:         |         |          |
| "                                     | his Thome Wave Nov 28 18:07                                            | Received by:      |                                          |                                       |                                              |                 |                                                        |          |            | - 1      | KT                                 | 2        |                |           | $\Lambda$  | 121      | 2             | 8.            | 17                    | - ľ           | Fime:         | 106     | 2n       |

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Environmental

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

## Appendix G Data Quality Assessment and Validation Memoranda



### Memorandum

#### June 14, 2019

| To:           | : Michaela Dyck, Natasha Turl, Lainey Kong |             |                    |             | ef. No.:    | 056484-55<br>Tahsis |             |
|---------------|--------------------------------------------|-------------|--------------------|-------------|-------------|---------------------|-------------|
|               |                                            | (IAI)       |                    |             |             |                     |             |
| From:         | Airesse Ma                                 | cPhee/vl/71 |                    | Т           | el:         | 604-248-3661        |             |
| 001           |                                            |             |                    |             |             |                     |             |
| CC:           |                                            |             |                    |             |             |                     |             |
| Subject:      | Data Qualit                                | y Assessm   | ent and Validation |             |             |                     |             |
| Laboratory:   | ALS (                                      | Canada Ltd. |                    | Date(s)     | Sampled:    | May 8, 2019         |             |
| Lab Job No.:  | L227                                       | 1564        |                    |             |             |                     |             |
| Media Samp    | led: Grour                                 | ndwater     |                    |             |             |                     |             |
| QA            | QC                                         |             | Criteria           | Pass        | Qualifier   | s Fail              | N/A         |
| Holding Time  | es                                         | Analyte spe | cific              |             | $\boxtimes$ |                     |             |
| Field Duplica | ate (blind)                                | Matrix spec | ific               |             |             |                     | $\boxtimes$ |
| Field Blank ( | blind)                                     | Non-detect  |                    | $\boxtimes$ |             |                     |             |
| Trip Blank    |                                            | Non-detect  |                    |             |             |                     | $\boxtimes$ |
| Temperature   | •                                          | Analyte spe | ecific             | $\boxtimes$ |             |                     |             |
| Lab QA/QC     |                                            | Within stan | dard recoveries    |             | $\boxtimes$ |                     |             |
| Data OK for   | Use                                        | Yes 🗌       | With Qualifiers 🛛  | No 🗌        | Initial: AM |                     |             |

The following results are qualified due to holding time exceedances:

| Lab<br>Report # | Sample Date<br>(mm/dd/yyyy) | Sample ID             | Analyte | Result | Qualifier | Units |
|-----------------|-----------------------------|-----------------------|---------|--------|-----------|-------|
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-01 | pH, lab | 8.13   | J         | s.u.  |
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-02 | pH, lab | 8.29   | J         | s.u.  |
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-03 | pH, lab | 7.74   | J         | s.u.  |
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-04 | pH, lab | 8.26   | J         | s.u.  |
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-05 | pH, lab | 8.28   | J         | s.u.  |
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-06 | pH, lab | 8.13   | J         | s.u.  |

Due to lab error, water sample for dissolved Hg was filtered after BrCl preservation. Non-detect results are unaffected, detected dissolved Hg results may be biased high:

| Lab<br>Report # | Sample Date<br>(mm/dd/yyyy) | Sample ID             | Analyte                | Result    | Qualifier | Units |
|-----------------|-----------------------------|-----------------------|------------------------|-----------|-----------|-------|
| L2271564        | 05/08/2019                  | WG-56484-080519-DB-01 | Mercury<br>(dissolved) | 0.0000100 | J         | mg/L  |





Notes:

J - Estimated concentration s.u. - Standard pH Units



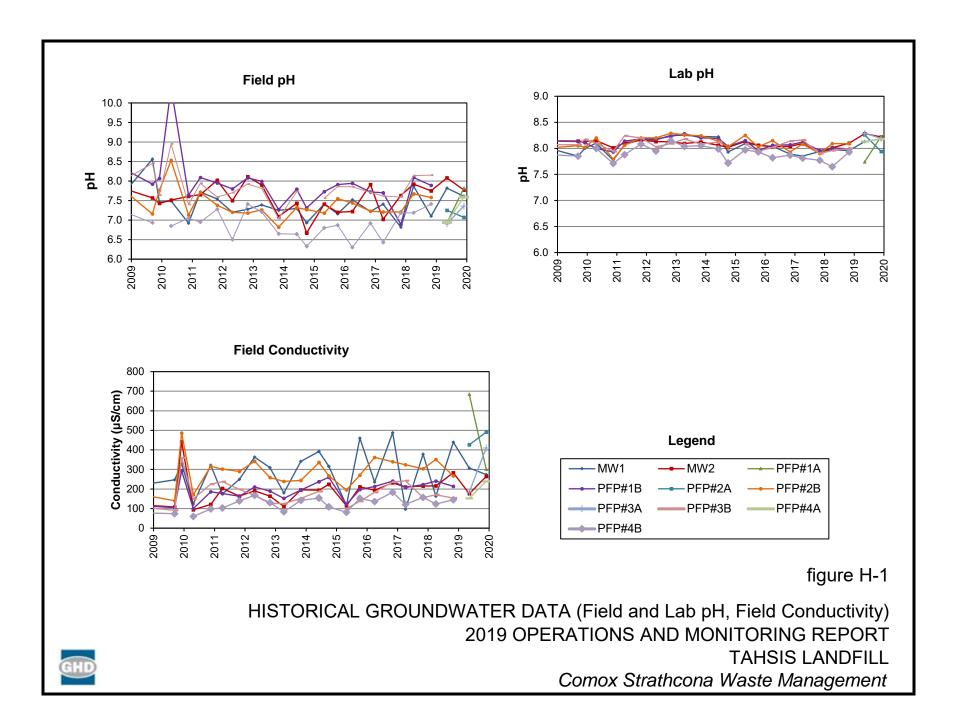
### Memorandum

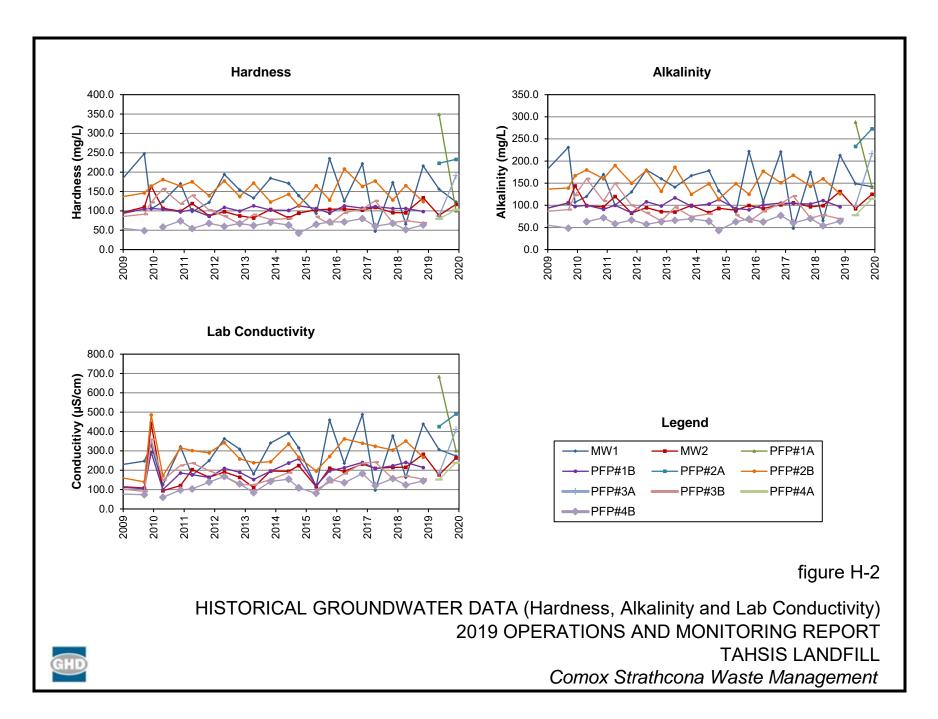
#### January 15, 2019

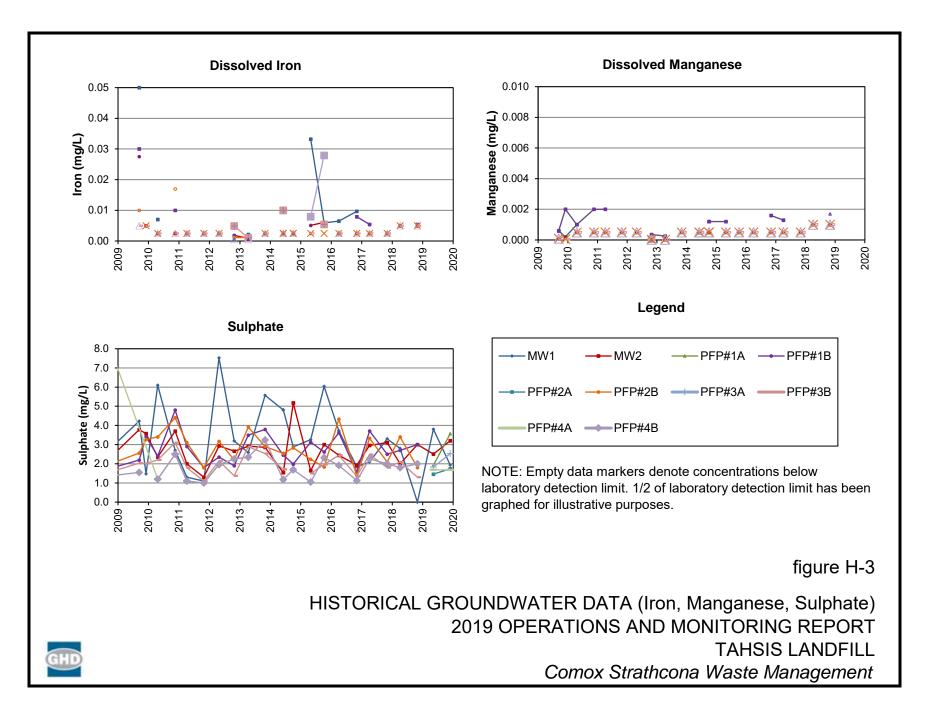
| To:               | Michaela D  | yck, Natasha | a Turl, Chris Thorne | R           |             | 056484-54<br>Tahsis |             |
|-------------------|-------------|--------------|----------------------|-------------|-------------|---------------------|-------------|
| From:             | Airesse Ma  | CPhee/vl/80  |                      |             |             |                     |             |
| Subject:          | Data Qualit | y Assessme   | nt and Validation    |             |             |                     |             |
|                   |             |              |                      |             |             |                     |             |
| Laboratory:       | ALS (       | Canada Ltd.  |                      | Date(s) S   | Sampled:    | November 27,        | 2019        |
| Lab Job No.       | : L2389     | 9505         |                      |             |             |                     |             |
| Sampled By        | Chris       | Thorne       |                      |             |             |                     |             |
| Media<br>Sampled: | Grou        | ndwater      |                      |             |             |                     |             |
| QA/               | QC          |              | Criteria             | Pass        | Qualifier   | s Fail              | N/A         |
| Holding Tim       | nes         | Method spe   | cific                |             | $\boxtimes$ |                     |             |
| Field Duplic      | ate (blind) | Matrix spec  | ific                 |             |             |                     | $\boxtimes$ |
| Field Blank       | (blind)     | Non-detect   |                      |             |             |                     | $\boxtimes$ |
| Trip Blank        |             | Non-detect   |                      |             |             |                     | $\boxtimes$ |
| Temperatur        | е           | Analyte spe  | cific                | $\boxtimes$ |             |                     |             |
| Lab QA/QC         |             | Within stand | lard recoveries      | $\boxtimes$ |             |                     |             |
| Data OK for       | Use         | Yes 🗌        | With Qualifiers 🛛    | No 🗌        | Initial: AM |                     |             |

The following results are qualified due to holding time exceedance:

| Lab<br>Report # | Sample Date<br>(mm/dd/yyyy) | Sample ID             | Analyte | Result | Qualifier | Units |
|-----------------|-----------------------------|-----------------------|---------|--------|-----------|-------|
| L2389505        | 11/27/2019                  | WG-56484-271119-CT-08 | pH, lab | 8.18   | J         | s.u.  |
| L2389505        | 11/27/2019                  | WG-56484-271119-CT-09 | pH, lab | 8.19   | J         | s.u.  |
| L2389505        | 11/27/2019                  | WG-56484-271119-CT-10 | pH, lab | 8.23   | J         | s.u.  |
| L2389505        | 11/27/2019                  | WG-56484-271119-CT-11 | pH, lab | 7.94   | J         | s.u.  |
| L2389505        | 11/28/2019                  | WG-56484-271119-CT-12 | pH, lab | 8.22   | J         | s.u.  |
| L2389505        | 11/27/2019                  | WG-56484-271119-CT-13 | pH, lab | 8.18   | J         | s.u.  |





Notes:

- J Estimated concentration
- s.u. Standard pH Units

Appendix H Historical Groundwater/Surface Water Chemistry Trend Plots









# about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

#### Greg Ferraro Greg.Ferraro@ghd.com 604.248.3670

Michaela Dyck Michaela.Dyck@ghd.com 604.248.3928

www.ghd.com